A new backward error analysis framework for GMRES and its application to GMRES preconditioned with MUMPS in mixed precision

Speaker: Bastien Vieublé Co-authors: Patrick Amestoy, Alfredo Buttari, Nick Higham, Jean-Yves L'Excellent, and Théo Mary 20/06/2023

The University of Manchester, UK

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: 2: $r_0 = b - Ax_0$ 3: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 4: repeat 5: $W_b = AV_b$ 6. 7: **for** i = 1, ..., k **do** 8: $h_{i,k} = \mathbf{v}_i^T \mathbf{w}_k$ 9: $W_k = W_k - h_{ik} V_i$ 10: end for 11: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 12: $V_{k} = [V_{1}, \ldots, V_{k}]$ 13: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_V \|\beta e_1 - H_k y\|$ 15' k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $X_{b} = X_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

Solution of general square linear systems Ax = b.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: 2: $r_0 = b - Ax_0$ 3: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 4: repeat 5: $W_b = AV_b$ 6. for i = 1, ..., k do 7: 8: $h_{i,k} = \mathbf{v}_i^T \mathbf{w}_k$ 9: $W_k = W_k - h_{ik} V_i$ 10: end for 11: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 12: $V_{k} = [V_{1}, \ldots, V_{k}]$ 13: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|$ 15' k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $X_{b} = X_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

- Solution of general square linear systems Ax = b.
- Computes iteratively an orthonormal Krylov basis V_k through an Arnoldi process.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: 2: $r_0 = b - Ax_0$ 3: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 4: repeat 5: $W_b = AV_b$ 6: for $i = 1, \ldots, k$ do 7: 8: $h_{i,b} = v_i^T w_b$ 9: $W_{k} = W_{k} - h_{ik}V_{i}$ 10: end for 11: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 12: $V_{b} = [V_{1}, \ldots, V_{b}]$ 13: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|$ 15' k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $X_{b} = X_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

- ► GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.
- Computes iteratively an orthonormal Krylov basis V_k through an Arnoldi process.
- ► Chooses the vector x_k in $span\{V_k\}$ that minimizes $||Ax_k b||$.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: 2: $r_0 = b - Ax_0$ 3: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 4: repeat 5: $W_b = AV_b$ 6: for $i = 1, \ldots, k$ do 7: 8: $h_{i,k} = v_i^T w_k$ 9: $W_k = W_k - h_{ik} V_i$ 10: end for 11: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 12: $V_{k} = [V_1, \ldots, V_{k}]$ 13: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|$ 15' k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $X_{b} = X_{0} + V_{b}V_{b}$

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

- ► GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.
- Computes iteratively an orthonormal Krylov basis V_k through an Arnoldi process.
- ► Chooses the vector x_k in span $\{V_k\}$ that minimizes $||Ax_k b||$.

Reiterate until x_k is a satisfying approximant of x.

Algorithm: GMRES(A, b, x_0, τ)

Require: $A \in \mathbb{R}^{n \times n}$, $b, x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: 2: $r_0 = b - Ax_0$ 3: $\beta = ||r_0||, v_1 = r_0/\beta, k = 1$ 4: repeat 5: $W_b = AV_b$ 6: for $i = 1, \ldots, k$ do 7: 8: $h_{i,b} = v_i^T w_b$ 9: $W_k = W_k - h_{ik} V_i$ 10: end for 11: $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ 12: $V_{k} = [V_{1}, \ldots, V_{k}]$ 13: $H_k = \{h_{i,j}\}_{1 \le j \le j+1: 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 15' k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $X_{b} = X_{0} + V_{b}V_{b}$

GMRES comes in many flavors

Preconditioning

GMRES might converge too slowly. It is essential to use a preconditioner M that transforms Ax = b into an "easier" linear system to solve.

 $M^{-1}Ax = M^{-1}b$ (left), Au = b, u = Mx (right)

More possibilities: split preconditioning, non-constant preconditioners (FGMRES).

Example of M: ILU, polynomial, block Jacobi, approximate inverse, an iterative method, ...

Restart

The cost in memory and execution time of an iteration grows with k.

Principle: under a chosen restart criterion, stop the iteration, erase V_k , restart GMRES with the initial guess $x_0 = x_k \Rightarrow$ Cumulate more iterations while bounding the cost.

Orthogonalization

The Arnoldi process can be constructed with any orthogonalization procedures: Householder QR, CGS, MGS, CGS2, ...

Warning: Different tradeoffs between numerical stability and performance!

What is a backward error analysis?

Backward and forward errors

Even for k = n, GMRES computed in finite precision won't deliver the exact solution. We quantify the quality of the computed solution \hat{x}_k by the quantities

$$bwd = \frac{\|A\widehat{x}_k - b\|}{\|A\|\|\widehat{x}_k\| + \|b\|}, \qquad fwd = \frac{\|x - \widehat{x}_k\|}{\|x\|}.$$

"The process of bounding the backward error of a computed solution is called backward error analysis" **N. J. Higham**, Accuracy and Stability of Numerical Algorithms.

Why we care?

> Formal proof that the computed solution will always be correct.

► Reveals how each operation contributes to the final accuracy of the computed solution.

▶ Is needed to derive a backward error analysis of an algorithm using GMRES.

Bounding the backward and forward error of GMRES is **NOT EASY**:

> GMRES is a complex algorithm made of different sub-algorithms
 → we need a backward error analysis on every sub-algorithm.
 > GMRES is an iterative process, bounds on the errors are only
 valid from a certain k → we need to prove the existence of k where
 the errors are satisfying.

Existing backward error analysis of GMRES

1995

Householder GMRES

📃 "Numerical stability of GMRES" by J. Drkošová, A. Greenbaum,

M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

Existing backward error analysis of GMRES

 Householder GMRES

 "Numerical stability of GMRES" by J. Drkošová, A. Greenbaum, M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

 MGS GMRES

 "Modified Gram-Schmidt (mgs), least squares, and backward stability of MGS-GMRES" by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.

Existing backward error analysis of GMRES

1995	Householder GMRES "Numerical stability of GMRES" by J. Drkošová, A. Greenbaum, M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.
2006	MGS GMRES Gam-Schmidt (mgs), least squares, and backward stability of MGS-GMRES" by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.
2007-2008	 Flexible MGS GMRES "A Note on GMRES Preconditioned by a Perturbed LDL^T Decomposition with Static Pivoting" by M. Arioli, I. S. Duff, S. Gratton, and S. Pralet, SIAM SISC. "Using FGMRES to obtain backward stability in mixed precision" by M. Arioli and I. S. Duff, ETNA.

In a previous work of mine:

#Five-Precision GMRES-based iterative refinement" by P. Amestoy, A. Buttari, N. J. Higham, J-Y L'Excellent, T. Mary, B. Vieublé, Preprint.

We needed a result on the backward stability of MGS GMRES left-preconditioned by LU factors computed in low precision.

PROBLEM: The previous backward error analysis of MGS-GMRES does not hold with left-preconditioner and it **CANNOT be straightforwardly adapted**.

In a previous work of mine:

#Five-Precision GMRES-based iterative refinement" by P. Amestoy, A. Buttari, N. J. Higham, J-Y L'Excellent, T. Mary, B. Vieublé, Preprint.

We needed a result on the backward stability of MGS GMRES left-preconditioned by LU factors computed in low precision.

PROBLEM: The previous backward error analysis of MGS-GMRES does not hold with left-preconditioner and it **CANNOT be straightforwardly adapted**.

⇒ Because of this tiny change, we had to REDO the analysis for this specific variant of GMRES!

The range of possible variants of GMRES is astonishing!

Number of variants =

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

X Four ways to apply them: left, right, split, flexible.

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

- X Four ways to apply them: left, right, split, flexible.
- × Restart or not.

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

- X Four ways to apply them: left, right, split, flexible.
- × Restart or not.
- × Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

- X Four ways to apply them: left, right, split, flexible.
- × Restart or not.
- × Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

 $\times\,$ All the "more exotic" techniques: recycling, randomization, mixed precision, compression of the basis, ...

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

- × Four ways to apply them: left, right, split, flexible.
- × Restart or not.
- × Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

× All the "more exotic" techniques: recycling, randomization, mixed precision, compression of the basis, ...

\Rightarrow An almost infinite number of variants...

... BUT only a tiny subset of them are covered by the previous analyses.

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

> These analyses were **not** made to be **modular** \Rightarrow Changing one element requires redoing a big part of the analysis.

➤ They are very smart, long, and hard ⇒ Understanding and adapting them is a challenge.

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

➤ These analyses were not made to be modular ⇒ Changing one element requires redoing a big part of the analysis.

➤ They are very smart, long, and hard ⇒ Understanding and adapting them is a challenge.

Consequences:

- > A few GMRES variants have error bounds on their computed solution
- Bounding errors of a new variant is inconvenient and tedious.

➤ ... that gives the sharpest error bounds?

- ► ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?

- ▶ ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?
- ➤ ... that is modular (if you change the preconditioner, you do not need to redo all the analysis)?

- ▶ ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?
- ➤ ... that is modular (if you change the preconditioner, you do not need to redo all the analysis)?
- ... that is easy to use to some extent?

- > ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?
- ➤ ... that is modular (if you change the preconditioner you do not need to redo all the analysis)?
- ... that is easy to use to some extent?

\Rightarrow We aim to propose a modular and generic backward error analysis tool for GMRES.

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A, b, M_l, k)

- 1: Initialize $Z_k = [z_1, ..., z_k]$.
- 2: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 3: Compute $\tilde{b} = M_l^{-1}b$.
- 4: Solve $y_k = \operatorname{argmin}_y \|\widetilde{b} C_k y\|$.
- 5: Compute the approximant $x_k = Z_k y_k$.

- 1: Initialize $Z_k = [z_1, ..., z_k]$.
- 2: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 3: Compute $\tilde{b} = M_l^{-1}b$.
- 4: Solve $y_k = \operatorname{argmin}_y \| b C_k y \|$.
- 5: Compute the approximant $x_k = Z_k y_k$.

Principle: Finding $x_k \in span\{Z_k\}$ minimizing the left-preconditioned residual $\|\widetilde{b} - \widetilde{A}x\|$.

- Do not assume Arnoldi process.
- ► Not presented as an iterative process.

- > Z_k can be any basis of rank k.
- ► Little assumptions on the operations.

► Can be seen as a **left-preconditioned Flexible GMRES** where the left-preconditioner M_l , the preconditioned basis Z_k , and the least squares solver are **not specified**.

- 1: Initialize $Z_k = [z_1, ..., z_k]$.
- 2: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 3: Compute $\tilde{b} = M_l^{-1}b$.
- 4: Solve $y_k = \operatorname{argmin}_y \| b C_k y \|$.
- 5: Compute the approximant $x_k = Z_k y_k$.

Specialization to:

Algorithm: MGS GMRES

1: Consider the computed Arnoldi basis $\hat{V}_k = [\hat{v}_1, \dots, \hat{v}_k]$.

2: Compute
$$C_k = A \widehat{V}_k$$
, where $M_l = l$.

3:

- 4: Solve $y_k = \operatorname{argmin}_y \|b A\widehat{V}_k y\|$ by MGS Arnoldi.
- 5: Compute the approximant $x_k = \widehat{V}_k y_k$.

- 1: Initialize $Z_k = [z_1, ..., z_k]$.
- 2: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 3: Compute $\tilde{b} = M_l^{-1}b$.
- 4: Solve $y_k = \operatorname{argmin}_y \|\widetilde{b} C_k y\|$.
- 5: Compute the approximant $x_k = Z_k y_k$.

Specialization to:

Algorithm: MGS GMRES with left- LU preconditioner

1: Consider the computed Arnoldi basis $\widehat{V}_k = [\widehat{v}_1, \dots, \widehat{v}_k]$.

2: Compute
$$C_k = \widetilde{A} \widehat{V}_k$$
 where $\widetilde{A} = U \setminus L \setminus A$.

3: Compute $\tilde{b} = U \setminus L \setminus b$.

4: Solve
$$y_k = \operatorname{argmin}_y \|\widetilde{b} - \widetilde{A}\widehat{V}_k y\|$$
 by MGS Arnoldi.

5: Compute the approximant $x_k = \widehat{V}_k y_k$.

- 1: Initialize $Z_k = [z_1, ..., z_k]$.
- 2: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 3: Compute $\tilde{b} = M_l^{-1}b$.
- 4: Solve $y_k = \operatorname{argmin}_y \|\widetilde{b} C_k y\|$.
- 5: Compute the approximant $x_k = Z_k y_k$.

Specialization to:

Algorithm: MGS GMRES with flexible LU preconditioner

1: Consider the preconditioned Arnoldi basis $Z_k = U \setminus L \setminus \widehat{V}_k$.

2: Compute
$$C_k = AZ_k$$
.

3:

- 4: Solve $y_k = \operatorname{argmin}_v \|b AZ_k y\|$ by MGS Arnoldi.
- 5: Compute the approximant $x_k = Z_k y_k$.

- 1: Initialize $Z_k = [z_1, ..., z_k]$.
- 2: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 3: Compute $\tilde{b} = M_l^{-1}b$.
- 4: Solve $y_k = \operatorname{argmin}_y \|\widetilde{b} C_k y\|$.
- 5: Compute the approximant $x_k = Z_k y_k$.

GEN-GMRES is an abstract generic algorithm that **can be specialized to many GMRES** algorithms \Rightarrow Any result on GEN-GMRES holds for its specializations.

Our goal: Make a backward error analysis of GEN-GMRES.

One analysis to rule them all!

Generic rounding error model

The terms $\epsilon_{\bar{A}}$, ϵ_{D} , ϵ_{LS} , and ϵ_{Z} quantify the accuracies of every operation and are unspecified. They are only specified for a given specialization of GEN-GMRES.

Matrix-matrix product with the basis (step 2)

$$\mathsf{fl}(\widetilde{A}Z_k) = \widetilde{A}Z_k + \Delta_{\widetilde{A}Z_k}, \qquad \|\Delta_{\widetilde{A}Z_k}\| \leq \epsilon_{\widetilde{A}} \|\widetilde{A}Z_k\|.$$

Preconditioned RHS (step 3)

$$fI(M_l^{-1}b) = \widetilde{b} + \Delta \widetilde{b}, \qquad \|\Delta \widetilde{b}\| \le \epsilon_b \|\widetilde{b}\|.$$

Least squares solution (step 4)

$$\begin{split} \widehat{y}_{k} &= \operatorname{argmin}_{y} \|\widetilde{b} + \Delta b' - (\operatorname{fl}(AZ_{k}) + \Delta'_{\widetilde{A}Z_{k}})\| \\ \| [\Delta \widetilde{b}', \Delta'_{\widetilde{A}Z_{k}}]e_{j}\| &\leq \epsilon_{\operatorname{LS}} \| [\widetilde{b}, \operatorname{fl}(AZ_{k})]e_{j}\| \end{split}$$

Compute the *k*th approximant (step 5)

 $\widehat{x}_k = \mathsf{fl}(Z_k \widehat{y}_k) = (Z_k + \Delta Z_k) \widehat{y}_k, \qquad \|\Delta Z_k\| \le \epsilon_{\mathbb{Z}} \|Z_k\|$

We need to define the special dimension(/iteration) *k* at which we can demonstrate that the computed solution has attained a satisfying error.

Key dimension

We define the key dimension k as the first $k \leq n$ such that, for all $\phi >$ 0, we have

$$\sigma_{\min}([\widetilde{b}\phi,\widetilde{A}Z_k]) \leq \epsilon_{LS} \|[\widetilde{b}\phi,\widetilde{A}Z_k]\|_F$$

and

$$\sigma_{\min}(\widetilde{A}Z_k) \gg (\epsilon_{\widetilde{A}} + \epsilon_{b} + \epsilon_{LS}) \|\widetilde{A}Z_k\|_F.$$

The philosophy of these conditions is to capture the exact moment where \tilde{b} lies in the range of $\tilde{A}Z_k$, which is the moment where the basis Z_k contains the solution.

E "Modified Gram-Schmidt (mgs), least squares, and backward stability of MGS-GMRES" by **C. C. Paige, M. Rozložník, and Z. Strakoš**, 2006, SIAM SIMAX.

Theorem

Consider the solution of a nonsingular linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}, \quad 0 \neq b \in \mathbb{R}^n,$$

with GEN-GMRES under the previous **error model**. If there exists a key dimension k as defined previously, then, GEN-GMRES produces a computed solution \hat{x}_k whose **backward** and **forward** error satisfies respectively

$$\frac{\|b - A\widehat{x}_k\|}{\|b\| + \|A\|\|\widehat{x}_k\|} \lesssim \Phi_{\kappa}(M_l), \qquad \frac{\|\widehat{x}_k - x\|}{\|x\|} \lesssim \Phi_{\kappa}(\widetilde{A})$$

where

$$\Phi \equiv \alpha \epsilon_{\tilde{A}} + \beta \epsilon_{b} + \beta \epsilon_{LS} + \lambda \epsilon_{Z}$$

with

$$\alpha \equiv \sigma_{\min}^{-1}(Z_k) \frac{\|\widetilde{A}Z_k\|}{\|\widetilde{A}\|}, \quad \beta \equiv \max(1, \sigma_{\min}^{-1}(Z_k) \frac{\|\widetilde{A}Z_k\|}{\|\widetilde{A}\|}), \quad \lambda \equiv \sigma_{\min}^{-1}(Z_k) \|Z_k\|.$$

How to use the previous result to **derive** forward and backward error bounds **for real GMRES algorithms**?

How to use the previous result to **derive** forward and backward error bounds **for real GMRES algorithms**?

Using the previous theorem requires some work:

- > Show that your algorithm is a **specialization of GEN-GMRES**.
- **Determine** $\epsilon_{\bar{A}}$, ϵ_{b} , ϵ_{LS} , and ϵ_{Z} . The difficulty of this step varies according to the existing literature of the methods used.
- ➤ Show the existence of the key dimension. The difficulty also varies according to the existing literature.

How to use the previous result to **derive** forward and backward error bounds **for real GMRES algorithms**?

Using the previous theorem requires some work:

- > Show that your algorithm is a **specialization of GEN-GMRES**.
- **Determine** $\epsilon_{\bar{A}}$, ϵ_{b} , ϵ_{LS} , and ϵ_{Z} . The difficulty of this step varies according to the existing literature of the methods used.
- ➤ Show the existence of the key dimension. The difficulty also varies according to the existing literature.

This Theorem is **backward compatible with the previous analyses**: Applying it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the same results as the existing analyses.

Error model for restarted GEN-GMRES

Algorithm: Restarted GEN-GMRES(A, b, M_l)

- 1: Initialize x₀
- 2: repeat
- 3: Compute $r_i = Ax_i b$.
- 4: Solve $Ad_i = r_i$ with GEN-GMRES.
- 5: Compute the approximant $x_{i+1} = x_i + d_i$.
- 6: until convergence

Error model for restarted GEN-GMRES

Algorithm: Restarted GEN-GMRES(A, b, M_l)

- 1: Initialize x₀
- 2: repeat
- 3: Compute $r_i = Ax_i b$.
- 4: Solve $Ad_i = r_i$ with GEN-GMRES.
- 5: Compute the approximant $x_{i+1} = x_i + d_i$.
- 6: until convergence

Residual computation (step 3)

$$\widehat{r}_i = b - A\widehat{x}_i + \Delta r_i, \qquad |\Delta r_i| \le \epsilon_{\mathsf{R}}(|b| + |A||\widehat{x}_i|).$$

Restart update (step 5)

$$\widehat{x}_{i+1} = \widehat{x}_i + \widehat{d}_i + \Delta x_i, \qquad |\Delta x_i| \le \epsilon_{\mathsf{u}} |\widehat{x}_{i+1}|.$$

Mixed precision introduction

Commonly available arithmetics

	ID	Signif. bits	Exp. bits	Range	Unit roundoff <i>u</i>
fp128	Q	113	15	10 ^{±4932}	1×10^{-34}
double-fp64	DD	107	11	10 ^{±308}	6×10^{-33}
fp64	D	53	11	10 ^{±308}	1×10^{-16}
fp32	S	24	8	10 ^{±38}	6×10^{-8}
tfloat32	Т	11	8	10 ^{±38}	5×10^{-4}
fp16	Н	11	5	10 ^{±5}	5×10^{-4}
bfloat16	В	8	8	10 ^{±38}	4×10^{-3}
fp8 (E4M3)	R	4	4	10 ^{±2}	6.3×10^{-2}
fp8 (E5M2)	R*	3	5	10 ^{±5}	1.3×10^{-1}

Commonly available arithmetics

	ID	Signif. bits	Exp. bits	Range	Unit roundoff <i>u</i>
fp128	Q	113	15	10 ^{±4932}	1×10^{-34}
double-fp64	DD	107	11	10 ^{±308}	6×10^{-33}
fp64	D	53	11	10 ^{±308}	1×10^{-16}
fp32	S	24	8	10 ^{±38}	6×10^{-8}
tfloat32	Т	11	8	10 ^{±38}	5×10^{-4}
fp16	Н	11	5	10 ^{±5}	5×10^{-4}
bfloat16	В	8	8	10 ^{±38}	4×10^{-3}
fp8 (E4M3)	R	4	4	10 ^{±2}	6.3×10^{-2}
fp8 (E5M2)	R*	3	5	10 ^{±5}	1.3×10^{-1}

The low precision arithmetics are **less accurate** BUT are **faster**, consumes **less memory** and **energy**.

Algorithm: Restart loop

1: Compute $A \approx \widehat{L}\widehat{U}$

Uf

2: repeat

3:
$$x_{i+1} = \text{GMRES}(A, \widehat{L}\widehat{U}, b, x_i, \tau)$$

4: until convergence

Algorithm: GMRES(A, LU, b, x_0 , τ) **Require:** A, $M^{-1} \in \mathbb{R}^{n \times n}$, b, $x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax$ 2: $s_0 = \widehat{U} \setminus \widehat{L} \setminus r_0$ 3: $\beta = ||s_0||, v_1 = s_0/\beta, k = 1$ 4: repeat 5. $Z_{k} = AV_{k}$ 6: $W_k = \widehat{U} \setminus \widehat{L} \setminus Z_k$ 7: for i = 1, ..., k do 8: $h_{i,k} = v_i^T W_k$ $W_k = W_k - h_{i,k} V_i$ 9: end for 10: 11. $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ $V_{k} = [V_{1}, \ldots, V_{k}]$ 12: 13: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_{V} \|\beta e_1 - H_k y\|$ 15: k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $x_{k} = x_{0} + V_{k}y_{k}$

Algorithm: Restart loop

1: Compute $A \approx \widehat{L}\widehat{U}$

Uf

2: repeat

3:
$$x_{i+1} = \text{GMRES}(A, \widehat{L}\widehat{U}, b, x_i, \tau)$$

- 4: until convergence
- Restarted LU-left-preconditioned GMRES with MGS Arnoldi.

Algorithm: GMRES($A, \widehat{LU}, b, x_0, \tau$)

Require: A, $M^{-1} \in \mathbb{R}^{n \times n}$, b, $x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax$ 2: $s_0 = \widehat{U} \setminus \widehat{L} \setminus r_0$ 3: $\beta = ||s_0||, v_1 = s_0/\beta, k = 1$ 4: repeat 5: $Z_{k} = AV_{k}$ 6: $W_k = \widehat{U} \setminus \widehat{L} \setminus Z_k$ 7: for i = 1, ..., k do 8: $h_{i,k} = v_i^T W_k$ 9: $W_{k} = W_{k} - h_{i k} V_{i}$ end for 10: 11. $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ $V_{k} = [V_1, \ldots, V_k]$ 12: 13: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 14: $y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|$ 15: k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $x_{k} = x_{0} + V_{k}y_{k}$

Algorithm: Restart loop

1: Compute $A \approx \widehat{L}\widehat{U}$

Uf

2: repeat

3:
$$x_{i+1} = \text{GMRES}(A, \widehat{LU}, b, x_i, \tau)$$

- 4: until convergence
- Restarted LU-left-preconditioned GMRES with MGS Arnoldi.
- ► 5 precisions: $u_f \ge u_g \ge u_p \ge u \ge u_r$.

Algorithm: GMRES($A, \widehat{LU}, b, x_0, \tau$)

Require: A, $M^{-1} \in \mathbb{R}^{n \times n}$, b, $x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax$ 2: $s_0 = \widehat{U} \setminus \widehat{L} \setminus r_0$ 3: $\beta = ||s_0||, v_1 = s_0/\beta, k = 1$ 4: repeat 5: $Z_{k} = AV_{k}$ 6: $W_k = \widehat{U} \setminus \widehat{L} \setminus Z_k$ 7: **for** i = 1, ..., k **do** 8: $h_{i,k} = v_i^T W_k$ 9: $W_{k} = W_{k} - h_{i k} V_{i}$ end for 10: 11. $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ $V_{k} = [V_1, \ldots, V_k]$ 12: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 13: 14: $y_{k} = \operatorname{argmin}_{v} \|\beta e_{1} - H_{k}y\|$ 15: k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $x_{k} = x_{0} + V_{k}y_{k}$

Algorithm: Restart loop

1: Compute $A \approx \widehat{L}\widehat{U}$

Uf

2: repeat

3:
$$x_{i+1} = \text{GMRES}(A, \widehat{LU}, b, x_i, \tau)$$

- 4: until convergence
- Restarted LU-left-preconditioned GMRES with MGS Arnoldi.
- ► 5 precisions: $u_f \ge u_g \ge u_p \ge u \ge u_r$.
- Aims to compute a solution to accuracy u.

Algorithm: GMRES($A, \widehat{LU}, b, x_0, \tau$)

Require: A, $M^{-1} \in \mathbb{R}^{n \times n}$, b, $x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax$ 2: $s_0 = \widehat{U} \setminus \widehat{L} \setminus r_0$ 3: $\beta = ||s_0||, v_1 = s_0/\beta, k = 1$ 4: repeat 5: $Z_{b} = AV_{b}$ 6: $W_k = \widehat{U} \setminus \widehat{L} \setminus Z_k$ 7: **for** i = 1, ..., k **do** 8: $h_{i,k} = v_i^T W_k$ 9: $W_{k} = W_{k} - h_{i k} V_{i}$ end for 10: 11. $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ $V_{k} = [V_1, \ldots, V_k]$ 12: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 13: 14: $y_{k} = \operatorname{argmin}_{v} \|\beta e_{1} - H_{k}y\|$ 15. k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $x_{k} = x_{0} + V_{k}y_{k}$

Algorithm: Restart loop

1: Compute $A \approx \widehat{L}\widehat{U}$

Uf

2: repeat

3:
$$x_{i+1} = \text{GMRES}(A, \widehat{LU}, b, x_i, \tau)$$

- 4: until convergence
- Restarted LU-left-preconditioned GMRES with MGS Arnoldi.
- ► 5 precisions: $u_f \ge u_g \ge u_p \ge u \ge u_r$.
- Aims to compute a solution to accuracy u.
- GMRES iterations and costly preconditioner computed in low precisions (u_g, u_f, and u_p).

Algorithm: GMRES($A, \widehat{LU}, b, x_0, \tau$)

Require: A, $M^{-1} \in \mathbb{R}^{n \times n}$, b, $x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax$ 2: $s_0 = \widehat{U} \setminus \widehat{L} \setminus r_0$ 3: $\beta = ||s_0||, v_1 = s_0/\beta, k = 1$ 4: repeat 5: $Z_{k} = AV_{k}$ 6: $W_k = \widehat{U} \setminus \widehat{L} \setminus Z_k$ 7: **for** i = 1, ..., k **do** 8: $h_{i,k} = v_i^T W_k$ 9: $W_{k} = W_{k} - h_{i k} V_{i}$ end for 10: 11. $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ $V_{b} = [V_{1}, \ldots, V_{b}]$ 12: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 13: 14: $y_{k} = \operatorname{argmin}_{v} \|\beta e_{1} - H_{k}y\|$ 15 k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $x_{k} = x_{0} + V_{k}y_{k}$

Algorithm: Restart loop

1: Compute $A \approx \widehat{L}\widehat{U}$

Uf

2: repeat

3:
$$x_{i+1} = \text{GMRES}(A, \widehat{LU}, b, x_i, \tau)$$

- 4: until convergence
- Restarted LU-left-preconditioned GMRES with MGS Arnoldi.
- ► 5 precisions: $u_f \ge u_g \ge u_p \ge u \ge u_r$.
- Aims to compute a solution to accuracy u.
- GMRES iterations and costly preconditioner computed in low precisions (ug, uf, and up).
- Restart computed in high precisions to recover accuracy (u and ur).

Algorithm: GMRES(A, LU, b, x_0, τ)

Require: A, $M^{-1} \in \mathbb{R}^{n \times n}$, b, $x_0 \in \mathbb{R}^n$, $\tau \in \mathbb{R}$ 1: $r_0 = b - Ax$ 2: $s_0 = \widehat{U} \setminus \widehat{L} \setminus r_0$ 3: $\beta = ||s_0||, v_1 = s_0/\beta, k = 1$ 4: repeat 5: $Z_{b} = AV_{b}$ 6: $W_k = \widehat{U} \setminus \widehat{L} \setminus Z_k$ 7: for i = 1, ..., k do 8: $h_{ik} = v_i^T w_k$ 9: $W_{k} = W_{k} - h_{i k} V_{i}$ end for 10: 11. $h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}$ $V_{b} = [V_{1}, \ldots, V_{b}]$ 12: $H_k = \{h_{i,i}\}_{1 \le i \le j+1; 1 \le j \le k}$ 13: 14: $y_{k} = \operatorname{argmin}_{v} \|\beta e_{1} - H_{k}y\|$ 15. k = k + 116: **until** $||\beta e_1 - H_b V_b|| < \tau$ 17: $x_{k} = x_{0} + V_{k}y_{k}$

Stability of restarted left-preconditioned GMRES

Using the theorem on restarted GEN-GMRES on the previous algorithm delivers the following stability result.

Theorem

Let Ax = b be solved by the previous mixed precision restarted LU-left-preconditioned GMRES. Provided that

 $\kappa(A)u_p < 1$ and $\sigma_{\min}(\widetilde{A}) \gg (u_p\kappa(A) + u_g) \|\widetilde{A}\|,$

the forward error

$$\frac{\|\hat{x} - x\|}{\|x\|} \le nu_r \operatorname{cond}(A, x) + u \quad if \quad (u_g + u_p \kappa(A))(1 + \kappa(A)^2 u_f^2) \ll 1,$$

and the backward error

$$\frac{\|A\hat{\mathbf{x}} - b\|}{\|A\|\|\mathbf{x}\| + \|b\|} \le n\mathbf{u}_r + \mathbf{u}, \quad \text{if} \quad (\mathbf{u}_g + u_p\kappa(A))(1 + \kappa(A)\mathbf{u}_f)\kappa(A) \ll 1.$$

#Five-Precision GMRES-based Iterative Refinement" by P. R. Amestoy, A. Buttari, N. J. Higham, J-Y. L'Excellent, T. Mary, B. Vieublé, Preprint.

Foretaste of performance study on real-life applications

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of industrial and SuiteSparse matrices.

The matrices are ordered in increasing $\kappa(A)$, the higher $\kappa(A)$ is, the slower the convergence (if reached at all).

Foretaste of performance study on real-life applications

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of industrial and SuiteSparse matrices.

➤ We run on OLYMPE supercomputer nodes (two Intel 18-cores Skylake/node), 1 node (2MPI×18threads) or 2 nodes (4MPI×18threads) depending on the matrix size.

Foretaste of performance study on real-life applications

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of industrial and SuiteSparse matrices.

► $u_p = u_g = u = D$ and $u_r = Q$.

> LU factors are computed in single precision ($u_f = s$), with low-rank approximation and static pivoting.

▶ We cast in-place the factors fully from fp32 to fp64.

▶ We cast in-place the factors fully from fp32 to fp64.

► In-house GMRES implementation and SpMV kernel running in parallel on the master MPI process.

▶ We cast in-place the factors fully from fp32 to fp64.

► In-house GMRES implementation and SpMV kernel running in parallel on the master MPI process.

► The MUMPS factorization and solve are distributed over the MPI processes.

Time performance with BLR + static pivoting w.r.t. DMUMPS

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M ($\epsilon_{stc} = 10^{-8}$)

I BLR-LU-GMRES-IR I BLR-STC-LU-GMRES-IR

Best time and memory w.r.t. DMUMPS

Compared to a LU direct solver in double precision without approximations and with threshold partial pivoting.

 \Rightarrow Up to 5.1× faster and 4.2× less memory with the same accuracy on the solution than DMUMPS!

Best time and memory w.r.t. DMUMPS

"Combining sparse approximate factorizations with mixed precision iterative refinement" by P. Amestoy, A. Buttari, N. J. Higham, J-Y L'Excellent, T. Mary, B. Vieublé, ACM TOMS.

Conclusion

Takeaways

> Many GMRES variants not covered by a backward error analysis.

➤ We propose a backward error analysis framework to efficiently derive error bounds on new variants.

➤ We can apply this framework to a **five precisions GMRES** algorithms.

It is still an ongoing work. No preprint available yet.

"Five-Precision GMRES-based iterative refinement" by P. Amestoy, A. Buttari, N. J.
 Higham, J-Y L'Excellent, T. Mary, B. Vieublé, Preprint.

"Combining sparse approximate factorizations with mixed precision iterative refinement" by P. Amestoy, A. Buttari, N. J. Higham, J-Y L'Excellent, T. Mary, B. Vieublé, ACM TOMS.

 "Mixed precision iterative refinement for the solution of large sparse linear systems" by B. Vieublé, Ph.D. Thesis.