
A new backward error analysis framework for
GMRES and its application to GMRES
preconditioned with MUMPS in mixed precision

Speaker: Bastien Vieublé
Co-authors: Patrick Amestoy, Alfredo Buttari, Nick Higham, Jean-Yves
L’Excellent, and Théo Mary
20/06/2023

The University of Manchester, UK

What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/22

What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/22

What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/22

What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/22

What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/22

GMRES comes in many flavors

Preconditioning
GMRES might converge too slowly. It is essential to use a preconditioner M that
transforms Ax = b into an “easier” linear system to solve.

M−1Ax = M−1b (left), Au = b, u = Mx (right)

More possibilities: split preconditioning, non-constant preconditioners (FGMRES).

Example of M: ILU, polynomial, block Jacobi, approximate inverse, an iterative
method, ...

Restart
The cost in memory and execution time of an iteration grows with k.

Principle: under a chosen restart criterion, stop the iteration, erase Vk , restart GMRES
with the initial guess x0 = xk ⇒ Cumulate more iterations while bounding the cost.

Orthogonalization
The Arnoldi process can be constructed with any orthogonalization procedures:
Householder QR, CGS, MGS, CGS2, ...

Warning: Different tradeoffs between numerical stability and performance!
2/22

What is a backward error analysis?

Backward and forward errors
Even for k = n, GMRES computed in finite precision won’t deliver the exact solution.
We quantify the quality of the computed solution x̂k by the quantities

bwd =
∥Ax̂k − b∥

∥A∥∥x̂k∥+ ∥b∥
, fwd =

∥x− x̂k∥
∥x∥

.

“The process of bounding the backward error of a computed solution is
called backward error analysis” N. J. Higham, Accuracy and Stability of Nu-
merical Algorithms.

comment-alt

Why we care?

ä Formal proof that the computed solution will always be correct.

ä Reveals how each operation contributes to the final accuracy of the computed
solution.

ä Is needed to derive a backward error analysis of an algorithm using GMRES.

3/22

Existing backward error analysis of GMRES

Bounding the backward and forward error of GMRES is NOT EASY:

ä GMRES is a complex algorithm made of different sub-algorithms
→ we need a backward error analysis on every sub-algorithm.
ä GMRES is an iterative process, bounds on the errors are only
valid from a certain k → we need to prove the existence of k where
the errors are satisfying.

4/22

Existing backward error analysis of GMRES

1995 • Householder GMRES
📔 “Numerical stability of GMRES” by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006 • MGS GMRES
📔 “Modified Gram-Schmidt (mgs), least squares, and backward
stability of MGS-GMRES” by C. C. Paige, M. Rozložník, and Z.
Strakoš, 2006, SIAM SIMAX.

2007-2008 • Flexible MGS GMRES
📔 “A Note on GMRES Preconditioned by a Perturbed LDLT

Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.
📔 “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.

4/22

Existing backward error analysis of GMRES

1995 • Householder GMRES
📔 “Numerical stability of GMRES” by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006 • MGS GMRES
📔 “Modified Gram-Schmidt (mgs), least squares, and backward
stability of MGS-GMRES” by C. C. Paige, M. Rozložník, and Z.
Strakoš, 2006, SIAM SIMAX.

2007-2008 • Flexible MGS GMRES
📔 “A Note on GMRES Preconditioned by a Perturbed LDLT

Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.
📔 “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.

4/22

Existing backward error analysis of GMRES

1995 • Householder GMRES
📔 “Numerical stability of GMRES” by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006 • MGS GMRES
📔 “Modified Gram-Schmidt (mgs), least squares, and backward
stability of MGS-GMRES” by C. C. Paige, M. Rozložník, and Z.
Strakoš, 2006, SIAM SIMAX.

2007-2008 • Flexible MGS GMRES
📔 “A Note on GMRES Preconditioned by a Perturbed LDLT

Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.
📔 “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.

4/22

Our experience of using these analyses

In a previous work of mine:

📔 “Five-Precision GMRES-based iterative refinement” by P. Amestoy, A. Buttari, N. J.
Higham, J-Y L’Excellent, T. Mary, B. Vieublé, Preprint.

We needed a result on the backward stability of MGS GMRES
left-preconditioned by LU factors computed in low precision.

PROBLEM: The previous backward error analysis of MGS-GMRES does not
hold with left-preconditioner and it CANNOT be straightforwardly adapted.

⇒ Because of this tiny change, we had to REDO the analysis for this
specific variant of GMRES!

5/22

Our experience of using these analyses

In a previous work of mine:

📔 “Five-Precision GMRES-based iterative refinement” by P. Amestoy, A. Buttari, N. J.
Higham, J-Y L’Excellent, T. Mary, B. Vieublé, Preprint.

We needed a result on the backward stability of MGS GMRES
left-preconditioned by LU factors computed in low precision.

PROBLEM: The previous backward error analysis of MGS-GMRES does not
hold with left-preconditioner and it CANNOT be straightforwardly adapted.

⇒ Because of this tiny change, we had to REDO the analysis for this
specific variant of GMRES!

5/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

6/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

6/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.

× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

6/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.

× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

6/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

6/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

6/22

Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: recycling, randomization, mixed
precision, compression of the basis, ...

⇒ An almost infinite number of variants...

6/22

Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

ä These analyses were not made to be modular ⇒ Changing one
element requires redoing a big part of the analysis.
ä They are very smart, long, and hard ⇒ Understanding and adapting
them is a challenge.

6/22

Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

ä These analyses were not made to be modular ⇒ Changing one
element requires redoing a big part of the analysis.
ä They are very smart, long, and hard ⇒ Understanding and adapting
them is a challenge.

6/22

Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

ä These analyses were not made to be modular ⇒ Changing one
element requires redoing a big part of the analysis.
ä They are very smart, long, and hard ⇒ Understanding and adapting
them is a challenge.

Consequences:

ä A few GMRES variants have error bounds on their computed solution
ä Bounding errors of a new variant is inconvenient and tedious.

6/22

Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the preconditioner, you do not need to
redo all the analysis)?
ä ... that is easy to use to some extent?

7/22

Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?

ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the preconditioner, you do not need to
redo all the analysis)?
ä ... that is easy to use to some extent?

7/22

Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?

ä ... that is modular (if you change the preconditioner, you do not need to
redo all the analysis)?
ä ... that is easy to use to some extent?

7/22

Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the preconditioner, you do not need to
redo all the analysis)?

ä ... that is easy to use to some extent?

7/22

Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the preconditioner, you do not need to
redo all the analysis)?
ä ... that is easy to use to some extent?

7/22

Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the preconditioner you do not need to
redo all the analysis)?
ä ... that is easy to use to some extent?

⇒ We aim to propose a modular and generic backward error analysis tool
for GMRES.

7/22

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A,b,Ml, k)
1: Initialize Zk = [z1, . . . , zk].
2: Compute Ck = ÃZk where Ã = M−1

l A.
3: Compute b̃ = M−1

l b.
4: Solve yk = argminy ∥b̃− Cky∥.
5: Compute the approximant xk = Zkyk.

Principle: Finding xk ∈ span{Zk} minimizing the left-preconditioned residual
∥b̃− Ãx∥.

ä Do not assume Arnoldi process.

ä Not presented as an iterative
process.

ä Zk can be any basis of rank k.

ä Little assumptions on the
operations.

ä Can be seen as a left-preconditioned Flexible GMRES where the
left-preconditioner Ml, the preconditioned basis Zk, and the least squares

solver are not specified.

8/22

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A,b,Ml, k)
1: Initialize Zk = [z1, . . . , zk].
2: Compute Ck = ÃZk where Ã = M−1

l A.
3: Compute b̃ = M−1

l b.
4: Solve yk = argminy ∥b̃− Cky∥.
5: Compute the approximant xk = Zkyk.

Principle: Finding xk ∈ span{Zk} minimizing the left-preconditioned residual
∥b̃− Ãx∥.

ä Do not assume Arnoldi process.

ä Not presented as an iterative
process.

ä Zk can be any basis of rank k.

ä Little assumptions on the
operations.

ä Can be seen as a left-preconditioned Flexible GMRES where the
left-preconditioner Ml, the preconditioned basis Zk, and the least squares

solver are not specified.
8/22

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A,b,Ml, k)
1: Initialize Zk = [z1, . . . , zk].
2: Compute Ck = ÃZk where Ã = M−1

l A.
3: Compute b̃ = M−1

l b.
4: Solve yk = argminy ∥b̃− Cky∥.
5: Compute the approximant xk = Zkyk.

Specialization to:

Algorithm: MGS GMRES
1: Consider the computed Arnoldi basis V̂k = [v̂1, . . . , v̂k].
2: Compute Ck = AV̂k, where Ml = I.
3:
4: Solve yk = argminy ∥b− AV̂ky∥ by MGS Arnoldi.
5: Compute the approximant xk = V̂kyk.

8/22

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A,b,Ml, k)
1: Initialize Zk = [z1, . . . , zk].
2: Compute Ck = ÃZk where Ã = M−1

l A.
3: Compute b̃ = M−1

l b.
4: Solve yk = argminy ∥b̃− Cky∥.
5: Compute the approximant xk = Zkyk.

Specialization to:

Algorithm: MGS GMRES with left- LU preconditioner
1: Consider the computed Arnoldi basis V̂k = [v̂1, . . . , v̂k].
2: Compute Ck = ÃV̂k where Ã = U\L\A.
3: Compute b̃ = U\L\b.
4: Solve yk = argminy ∥b̃− ÃV̂ky∥ by MGS Arnoldi.
5: Compute the approximant xk = V̂kyk.

8/22

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A,b,Ml, k)
1: Initialize Zk = [z1, . . . , zk].
2: Compute Ck = ÃZk where Ã = M−1

l A.
3: Compute b̃ = M−1

l b.
4: Solve yk = argminy ∥b̃− Cky∥.
5: Compute the approximant xk = Zkyk.

Specialization to:

Algorithm: MGS GMRES with flexible LU preconditioner
1: Consider the preconditioned Arnoldi basis Zk = U\L\V̂k.
2: Compute Ck = AZk.
3:
4: Solve yk = argminy ∥b− AZky∥ by MGS Arnoldi.
5: Compute the approximant xk = Zkyk.

8/22

Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A,b,Ml, k)
1: Initialize Zk = [z1, . . . , zk].
2: Compute Ck = ÃZk where Ã = M−1

l A.
3: Compute b̃ = M−1

l b.
4: Solve yk = argminy ∥b̃− Cky∥.
5: Compute the approximant xk = Zkyk.

GEN-GMRES is an abstract generic algorithm that can be specialized to many
GMRES algorithms ⇒ Any result on GEN-GMRES holds for its specializations.

Our goal: Make a backward error analysis of GEN-GMRES.

One analysis to rule them all!

8/22

Generic rounding error model

The terms ϵÃ , ϵb , ϵLS, and ϵZ quantify the accuracies of every operation and are
unspecified. They are only specified for a given specialization of GEN-GMRES.

Matrix–matrix product with the basis (step 2)

f l(ÃZk) = ÃZk +∆ÃZk
, ∥∆ÃZk

∥ ≤ ϵÃ∥ÃZk∥.

Preconditioned RHS (step 3)

f l(M−1
l b) = b̃+∆b̃, ∥∆b̃∥ ≤ ϵb∥b̃∥.

Least squares solution (step 4)

ŷk = argminy ∥b̃+∆b′ − (f l(AZk) + ∆′
ÃZk

)∥

∥[∆b̃′,∆′
ÃZk

]ej∥ ≤ ϵLS∥[b̃, f l(AZk)]ej∥

Compute the kth approximant (step 5)

x̂k = fl(Zkŷk) = (Zk +∆Zk)̂yk, ∥∆Zk∥ ≤ ϵZ∥Zk∥
9/22

A key dimension(/iteration)

We need to define the special dimension(/iteration) k at which we can
demonstrate that the computed solution has attained a satisfying error.

Key dimension
We define the key dimension k as the first k ≤ n such that, for all ϕ > 0, we
have

σmin([b̃ϕ, ÃZk]) ≤ ϵLS∥[b̃ϕ, ÃZk]∥F
and

σmin(ÃZk) ≫ (ϵÃ + ϵb + ϵLS)∥ÃZk∥F.

The philosophy of these conditions is to capture the exact moment where b̃
lies in the range of ÃZk, which is the moment where the basis Zk contains the
solution.

📔 “Modified Gram-Schmidt (mgs), least squares, and backward stability of
MGS-GMRES” by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.

10/22

Error bounds of GEN-GMRES

Theorem
Consider the solution of a nonsingular linear system

Ax = b, A ∈ Rn×n, 0 ̸= b ∈ Rn,

with GEN-GMRES under the previous error model. If there exists a key dimension k
as defined previously, then, GEN-GMRES produces a computed solution x̂k whose
backward and forward error satisfies respectively

∥b− Ax̂k∥
∥b∥+ ∥A∥∥x̂k∥

≲ Φκ(Ml),
∥x̂k − x∥

∥x∥
≲ Φκ(Ã),

where
Φ ≡ αϵÃ + βϵb + βϵLS + λϵZ

with

α ≡ σ−1
min(Zk)

∥ÃZk∥
∥Ã∥

, β ≡ max(1, σ−1
min(Zk)

∥ÃZk∥
∥Ã∥

), λ ≡ σ−1
min(Zk)∥Zk∥.

11/22

How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

ä Show that your algorithm is a specialization of GEN-GMRES.

ä Determine ϵÃ, ϵb, ϵLS, and ϵZ. The difficulty of this step varies according
to the existing literature of the methods used.

ä Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

12/22

How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

ä Show that your algorithm is a specialization of GEN-GMRES.

ä Determine ϵÃ, ϵb, ϵLS, and ϵZ. The difficulty of this step varies according
to the existing literature of the methods used.

ä Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

12/22

How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

ä Show that your algorithm is a specialization of GEN-GMRES.

ä Determine ϵÃ, ϵb, ϵLS, and ϵZ. The difficulty of this step varies according
to the existing literature of the methods used.

ä Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

12/22

Error model for restarted GEN-GMRES

Algorithm: Restarted GEN-GMRES(A,b,Ml)
1: Initialize x0
2: repeat
3: Compute ri = Axi − b.
4: Solve Adi = ri with GEN-GMRES.
5: Compute the approximant xi+1 = xi + di.
6: until convergence

Residual computation (step 3)

r̂i = b− Ax̂i +∆ri, |∆ri| ≤ ϵR(|b|+ |A||̂xi|).

Restart update (step 5)

x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ ϵU |̂xi+1|.

13/22

Error model for restarted GEN-GMRES

Algorithm: Restarted GEN-GMRES(A,b,Ml)
1: Initialize x0
2: repeat
3: Compute ri = Axi − b.
4: Solve Adi = ri with GEN-GMRES.
5: Compute the approximant xi+1 = xi + di.
6: until convergence

Residual computation (step 3)

r̂i = b− Ax̂i +∆ri, |∆ri| ≤ ϵR(|b|+ |A||̂xi|).

Restart update (step 5)

x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ ϵU |̂xi+1|.

13/22

Mixed precision introduction

Commonly available arithmetics

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1× 10−34

double-fp64 DD 107 11 10±308 6× 10−33

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

tfloat32 T 11 8 10±38 5× 10−4

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3

fp8 (E4M3) R 4 4 10±2 6.3× 10−2

fp8 (E5M2) R* 3 5 10±5 1.3× 10−1

The low precision arithmetics are less accurate BUT are faster, consumes
less memory and energy.

14/22

Mixed precision introduction

Commonly available arithmetics

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1× 10−34

double-fp64 DD 107 11 10±308 6× 10−33

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

tfloat32 T 11 8 10±38 5× 10−4

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3

fp8 (E4M3) R 4 4 10±2 6.3× 10−2

fp8 (E5M2) R* 3 5 10±5 1.3× 10−1

The low precision arithmetics are less accurate BUT are faster, consumes
less memory and energy.

14/22

Specialization to mixed precision GMRES

Algorithm: Restart loop
1: Compute A ≈ L̂Û uf
2: repeat
3: xi+1 = GMRES(A, L̂Û, b, xi, τ)
4: until convergence

ä Restarted LU-left-preconditioned
GMRES with MGS Arnoldi.

ä 5 precisions: uf ≥ ug ≥ up ≥ u ≥ ur .

ä Aims to compute a solution to
accuracy u.

ä GMRES iterations and costly
preconditioner computed in low
precisions (ug , uf , and up).

ä Restart computed in high precisions
to recover accuracy (u and ur).

Algorithm: GMRES(A, L̂Û,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û\L̂\r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û\L̂\zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
15/22

Specialization to mixed precision GMRES

Algorithm: Restart loop
1: Compute A ≈ L̂Û uf
2: repeat
3: xi+1 = GMRES(A, L̂Û, b, xi, τ)
4: until convergence

ä Restarted LU-left-preconditioned
GMRES with MGS Arnoldi.

ä 5 precisions: uf ≥ ug ≥ up ≥ u ≥ ur .

ä Aims to compute a solution to
accuracy u.

ä GMRES iterations and costly
preconditioner computed in low
precisions (ug , uf , and up).

ä Restart computed in high precisions
to recover accuracy (u and ur).

Algorithm: GMRES(A, L̂Û,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û\L̂\r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û\L̂\zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
15/22

Specialization to mixed precision GMRES

Algorithm: Restart loop
1: Compute A ≈ L̂Û uf
2: repeat
3: xi+1 = GMRES(A, L̂Û, b, xi, τ)
4: until convergence

ä Restarted LU-left-preconditioned
GMRES with MGS Arnoldi.

ä 5 precisions: uf ≥ ug ≥ up ≥ u ≥ ur .

ä Aims to compute a solution to
accuracy u.

ä GMRES iterations and costly
preconditioner computed in low
precisions (ug , uf , and up).

ä Restart computed in high precisions
to recover accuracy (u and ur).

Algorithm: GMRES(A, L̂Û,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û\L̂\r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û\L̂\zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
15/22

Specialization to mixed precision GMRES

Algorithm: Restart loop
1: Compute A ≈ L̂Û uf
2: repeat
3: xi+1 = GMRES(A, L̂Û, b, xi, τ)
4: until convergence

ä Restarted LU-left-preconditioned
GMRES with MGS Arnoldi.

ä 5 precisions: uf ≥ ug ≥ up ≥ u ≥ ur .

ä Aims to compute a solution to
accuracy u.

ä GMRES iterations and costly
preconditioner computed in low
precisions (ug , uf , and up).

ä Restart computed in high precisions
to recover accuracy (u and ur).

Algorithm: GMRES(A, L̂Û,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û\L̂\r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û\L̂\zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
15/22

Specialization to mixed precision GMRES

Algorithm: Restart loop
1: Compute A ≈ L̂Û uf
2: repeat
3: xi+1 = GMRES(A, L̂Û, b, xi, τ)
4: until convergence

ä Restarted LU-left-preconditioned
GMRES with MGS Arnoldi.

ä 5 precisions: uf ≥ ug ≥ up ≥ u ≥ ur .

ä Aims to compute a solution to
accuracy u.

ä GMRES iterations and costly
preconditioner computed in low
precisions (ug , uf , and up).

ä Restart computed in high precisions
to recover accuracy (u and ur).

Algorithm: GMRES(A, L̂Û,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û\L̂\r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û\L̂\zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
15/22

Specialization to mixed precision GMRES

Algorithm: Restart loop
1: Compute A ≈ L̂Û uf
2: repeat
3: xi+1 = GMRES(A, L̂Û, b, xi, τ)
4: until convergence

ä Restarted LU-left-preconditioned
GMRES with MGS Arnoldi.

ä 5 precisions: uf ≥ ug ≥ up ≥ u ≥ ur .

ä Aims to compute a solution to
accuracy u.

ä GMRES iterations and costly
preconditioner computed in low
precisions (ug , uf , and up).

ä Restart computed in high precisions
to recover accuracy (u and ur).

Algorithm: GMRES(A, L̂Û,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û\L̂\r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û\L̂\zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
15/22

Stability of restarted left-preconditioned GMRES

Using the theorem on restarted GEN-GMRES on the previous algorithm
delivers the following stability result.

Theorem
Let Ax = b be solved by the previous mixed precision restarted
LU-left-preconditioned GMRES. Provided that

κ(A)up < 1 and σmin(Ã) ≫ (upκ(A) + ug)∥Ã∥,

the forward error

∥x̂− x∥
∥x∥

≤ nur cond(A, x) + u if (ug + upκ(A))(1+ κ(A)2uf2) ≪ 1,

and the backward error
∥Ax̂− b∥

∥A∥∥x∥+ ∥b∥
≤ nur + u, if (ug + upκ(A))(1+ κ(A)uf)κ(A) ≪ 1.

📔 “Five-Precision GMRES-based Iterative Refinement” by P. R. Amestoy, A. Buttari, N. J.
Higham, J-Y. L’Excellent, T. Mary, B. Vieublé, Preprint.

16/22

Foretaste of performance study on real-life applications

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä The matrices are ordered in increasing κ(A), the higher κ(A) is, the
slower the convergence (if reached at all).

17/22

Foretaste of performance study on real-life applications

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä We run on OLYMPE supercomputer nodes (two Intel 18-cores
Skylake/node), 1 node (2MPI×18threads) or 2 nodes (4MPI×18threads)
depending on the matrix size.

17/22

Foretaste of performance study on real-life applications

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä up = ug = u = D and ur = Q.
ä LU factors are computed in single precision (uf = S), with low-rank
approximation and static pivoting.

17/22

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä We cast in-place the factors fully from fp32 to fp64.

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

18/22

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä We cast in-place the factors fully from fp32 to fp64.

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

18/22

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä We cast in-place the factors fully from fp32 to fp64.

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

18/22

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä We cast in-place the factors fully from fp32 to fp64.

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

18/22

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7 1.8

3 2.8

no
co

nv
er
ge

nc
e

1.4 1.4 1.5

2.6
3.4

no
co

nv
er
ge

nc
e

1.9

1.4
1.7 1.8

3 2.8
no

co
nv

er
ge

nc
e

1.4

ϵBLR

LU-GMRES-IR

19/22

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7
1.4 1.4

ϵBLR

LU-GMRES-IR BLR-LU-GMRES-IR

19/22

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7 1.8
1.4 1.4 1.5

ϵBLR

LU-GMRES-IR BLR-LU-GMRES-IR

19/22

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7 1.8

3

1.4 1.4 1.5

2.6

ϵBLR

LU-GMRES-IR BLR-LU-GMRES-IR

19/22

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7 1.8

3 2.8

1.4 1.4 1.5

2.6
3.4

ϵBLR

LU-GMRES-IR BLR-LU-GMRES-IR

19/22

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7 1.8

3 2.8
no

co
nv

er
ge

nc
e

1.4 1.4 1.5

2.6
3.4

no
co

nv
er
ge

nc
e

ϵBLR

LU-GMRES-IR BLR-LU-GMRES-IR

19/22

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100% Time

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 1.7 1.8

3 2.8

no
co

nv
er
ge

nc
e

ϵBLR

BLR-LU-GMRES-IR

20/22

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M (ϵSTC = 10−8)

0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100% Time

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.1 1.9 2

3.7 3.2

no
co

nv
er
ge

nc
e

ϵBLR

BLR-LU-GMRES-IR BLR-STC-LU-GMRES-IR

20/22

Best time and memory w.r.t. DMUMPS

Time
El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

5.0

2.1

3.8 3.7

1.3

2.8

5.1

1.6

Memory

El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

3.7 3.6 3.5 3.4
2.8

3.9 3.4

1.9

4.2

Compared to a LU direct solver in double precision without approximations
and with threshold partial pivoting.

⇒ Up to 5.1× faster and 4.2× less memory with the same accuracy on the
solution than DMUMPS!

21/22

Best time and memory w.r.t. DMUMPS

Time
El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

5.0

2.1

3.8 3.7

1.3

2.8

5.1

1.6

Memory

El
ec

tro
Ph

ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

3.7 3.6 3.5 3.4
2.8

3.9 3.4

1.9

4.2

📔 “Combining sparse approximate factorizations with mixed precision iterative
refinement” by P. Amestoy, A. Buttari, N. J. Higham, J-Y L’Excellent, T. Mary, B. Vieublé,
ACM TOMS.

21/22

Conclusion

Takeaways

ä Many GMRES variants not covered by a backward error analysis.
ä We propose a backward error analysis framework to efficiently
derive error bounds on new variants.
ä We can apply this framework to a five precisions GMRES algo-
rithms.

It is still an ongoing work. No preprint available yet.

📔 “Five-Precision GMRES-based iterative refinement” by P. Amestoy, A. Buttari, N. J.
Higham, J-Y L’Excellent, T. Mary, B. Vieublé, Preprint.

📔 “Combining sparse approximate factorizations with mixed precision iterative
refinement” by P. Amestoy, A. Buttari, N. J. Higham, J-Y L’Excellent, T. Mary, B. Vieublé,
ACM TOMS.

📔 “Mixed precision iterative refinement for the solution of large sparse linear systems”
by B. Vieublé, Ph.D. Thesis. 22/22

