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Past era of innovation

* The mid-1980s saw the emergence of CMOS as a viable semiconductor technology
- Low cost, low power, and high-volume components led to “commercial off the shelf” (COTS) strategy

* Unbounded demand for computing in science and national security
- Public funding for computer science research

* A decade of innovation in computer architecture and parallel programming
- Communicating sequential processes, shared memory, data parallel, systolic, dataflow, etc.

 Thomas Sterling ruined it for all of us () PSS TSI [
- He! | TEE
He invented the Linux cluster el =5 A

* Cheap hardware
* Free software
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Déja vu: we have entered a new era of innovation

s E————

 Dennard scaling has ended
* Moore’s Law is slowing
* Yet, demand is growing

D.E. Shaw’s Anton (drug design)
“General purpose” GPUs

TPUs and DPUs

Neuromorphic (IBM True North)
Annealers for optimization (Fujitsu, Toshiba and D-Wave)

ML start ups including:

Cerebras (wafer scale integration)
Samba Nova (reconfigurable data flow)

Quantum computers

* Which of these can we exploit?



Graphical Processing Units (GPUs)

e Familiar to this community

* More computing power than their host
- Slower clocks, but an order-of-magnitude more ALUs

- Off-load DGEMM and other compute-bound functions

* O(N?) data transfer versus O(N3) floating point operations
e |IBM'’s ESSL does this transparently

- Write more sophisticated functions in CUDA (or HIP, or SYCL)

Nvidia Hopper

 More memory bandwidth than their host

- HBM provides an order-of-magnitude more main memory bandwidth
* An order of magnitude less memory volume

- Off-load memory bandwidth bound functions
 E.g., iterative solvers dominated by sparse matrix multiply
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Accelerated Processing Units (APUs)

 AMD devices mixing CPU and GPU

- On the same for game consoles
- In the same socket for HPC

* Only one physical memory

- Upcoming MI300A CPUs and GPUs will share 128 GB of HBM
 Will be launched at SC23
- No DDR for the CPUs

- Should eliminate the CPU <-> GPU data copying bottleneck

* Open gquestions
- Will this enable exploiting finer-grained computations on GPUs?
- Will we be able to use OpenMP 5 directives effectively?
- Will kernel launch times or other overheads still limit broader utility of GPUs?
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Field Programmable Gate Array (FPGA)

* “Sea of gates”
- First brought to market in 1985 by Xilinx
- User programs logical units (LUTS) and their interconnect

Create your own custom circuit
Slower and more power-hungry than an ASIC

- Widely used in networking systems
* Reconfigure hardware in the field with software patches

* Programmable Array of Memory
- World’s first attempt to make an FPGA-based accelerator
- DEC Paris Research Center

 SPLASH
- First attempt in the US
- My wife was one of four people who could program it
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How can an FPGA help?

GPUs were initially used for compute intensive functions
- Factor large frontal matrices

Now GPU memory bandwidth is often more important

- Sparse matrix — vector multiplication
- Algebraic multigrid

FPGAs are cheaper and have lower power consumption than GPUs

FPGAs now have HBM too

- Xilinx U280 has 8 GB and 460 GB/s
- Ansys joined UCLA Prof. Jason Cong’s Center for Domain-Specific Computing (CDSC)

- Exploring preconditioned Conjugate Gradients
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The Jacobi Preconditioned Conjugate Gradient (JPCG) Solver

Algorithm 1 Jacobi preconditioner conjugate gradient solver
for solving a linear system A - X = b.

Require:

(1) matrix A, (2) Jacobi preconditioner M, (3) reference %

vector b, (4) initial solution vector Xy, (5) convergence e Solve A*x=b where A and b are known and
Ent:;iilom 7, and (6) maximum iteration number N,x. X iS un kn own

A solution vector X.
r«—b—A- io

* |teratively refine errors and approach a

1: .

> 7 M-1.7¥ solution

3Pz : : C e : :
i * Widely used in scientific and engineering
5: <71’ 7T . . .

6 for (0< i< Now and 1r > 1) do computing, including LS-DYNA

7. ap< A-p - Default for thermal modeling
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11: Z+ML.7

rZ_new < 7' - Z
13: P+ Z+ (rz_new/rz) - p
14:  TZ < IZ_New

15 <+« 71' T
16: end for
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Callipepla

* High-Level Synthesis can take days to run

- Therefore, a PCG accelerator cannot be uniquely designed for each sparse
matrix

 Callipepla (California state bird) is streaming architecture for PCG
- Operates on an arbitrary sparse matrix structure

e Research questions included:
- How to support an arbitrary problem and terminate accelerated processing
on the fly?
* Main loop termination condition unknown until run time
- How to coordinate long-vector data flow among processing modules?
e Off-chip accesses: may waste memory bandwidth
* On-chip accesses: which vectors and which modules can be kept ina very limited memory

- How to reduce off-chip memory bandwidth yet maintain the double precision
(FP64) accuracy?

 SpMV dominates the memory bandwidth consumed
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Mixed-precision sparse matrix-vector multiplication

e Bandwidth

- FP32 is better

* Accuracy
- FP64 is better
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Callipepalla architectural components

U280 HBM FPGA Bihia B M2: DotPdt-alpha
. M1: SpMV

Memory modules -> read/write
M3: Update-x

* Vector control modules -> [ | =
control vector flows . Rd/Wriap:| | VecCtrl ap M4: Update-r
 Computation modules -> T | [1Rd/Wiipi | VecCtrlp -
tati M1-M8 = I M5: Left-Divide
computations, - < CREIWEx ] [ VecCtrl
* SpMV: based on Serpens TRAIWer ] | VecCalr M6: DotPdt-rz
(DAC’22) || e/

Re/Wr:iz:1 | VecCtrl z M7: Update-p

i REME Global
Controller MS8: DotPdt-rr

\nsys
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Dependency & Three Computation Phases

* The computation modules ->
three phases

Wr - x

Phase-1.1 i Phase-2 i Phase-3
Rd - Wr - ! Rd - Rd - ! Rd - Rd -
- A scalar dependency separates two PJ /@ : o Rd-epl, L
phases IMl ap=A*p : |M4 r=r-alpha *ap : |M4 r=r-alpha * ap
. . Y |
- Each vector only rd/wr once within a alpha ! | eq™m r ' [Rd-M r
: x \ ! <a y
phase ----1 M5 z=M\r | M5 z=M\r
- All modules share the same vectors — ap i e \W
within a phase il I e e e W Al
. 2| alpha=rz/(p*ap) |' M6 rz=r*z ' M7|p=z+ (rz/rz_old) *p
p p_ap | | P
* VVector streamlng reuse Fo . ! N
. . e : .1 [Rax] [, [wrp
- To trigger the processing of individual Phase-1.2 i v i = v
modules ! M8 res=r*r ! |M3 x =X + alpha * p
! alpha ! 1 ©

- To overlap computation to save
processing time

- To share vectors among modules to
save off-chip bandwidth
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Early results in LS-DYNA

* AWE nested cylinders benchmark FPGA timing:

* AMD Host with Xilinx Alveo Preprocessing 28.43
Solver | 1ststep| 2" step ,
__________________________________________ Downloading 0.77
Multifrontal | 849 | 2.1 Solving 13.96
Ref. JPCG | 408 | N/A
FPGA JPCG | 43 | 50

* Intel Skylake (two AVX512 ALUs), first load step
Solver | 1 CPU | 8 MPI
Multifrontal | 562 | 113
JPCG | 265 | 39
ICCG | 164 | 34
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Future directions for FPGA R&D

* Multiple FPGASs per host node
- How many PCl-e channels do you have?
- Multiple distributed memory hosts

Like Nvidia GPUS, Xilinx FPGAs can talk to each other without involving their hosts

* ICCG

- Requires triangular solves
- Work in progress with UCLA



Cerebras machine learning startup

One of over a hundred hardware startups targeting training for machine learning

Cerebras is unique in that they’ve gone wafer-scale!

- Obvious good idea for decades
Not easy though. Gene Amdahl tried and failed

- TSMC is their fab

Data movement on-chip takes more energy than arithmetic.

- 100 pJ for a floating-point operation
- 120 pJ to move an operand 2 cm

Data movement off-chip takes an order-of-magnitude more energy

- 2000 pJ to move a bit to DRAM
- The Cerebras WSE doesn’t have multiple chips
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Cerebras CS-2 Wafer-Scale Engine
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- Largest “chip” in the World at 46,225 mm?
2.6 trillion transistors i
850,000 32-bit cores, with ~2 PFlop/s peak

20 PB/s of memory bandwidth

220 Pb/s on-chip network

.....
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* Less Good
- 40 GB of SRAM
* Not much state at each vertex in a neural net
- No high-level programming language
* TensorFlow and PyTorch Cerebr]a - WSE-2 Large;tGPU
- 15 RU, 23 KW 46,225mm? Silicon 826mm? Silicon

L. 2.6 Trillion transistors 54.2 Billion transistors
* More energy efficient than GPU-based systems

R, ‘Ansy's

©2021 ANSYS, Inc.



Collaboration with Cerebras and National Energy Technology Lab

 Focus on iterative solvers
- Not enough memory for MUMPS

* |nitially looking at structured, 3D grids

- First two dimensions map easily to Cerebras processor grid
e 3dimension is local memory
- Performance of approximately 1 PFlop/s when all processors are busy

* Unstructured grids is work-in-progress



Ansys and quantum computing

e Ansys is involved in quantum computing today.
- Our Computer Aided Engineering (CAE) tools are being used to design quantum computers.
- E.g., HFSS is used to design resonators for transmons

* Ansys needs to know if we can use quantum computers to accelerate our CAE tools.
- We have formed a partnership with IBM to investigate quantum computing.
- Initial focus on graph partitioning.

* Longer term, Ansys expects quantum computers will enable new CAE markets that
are inconceivable today.

- Simulation of quantum dynamics.
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The relative importance of sparse matrix reordering

We reorder sparse matrices to Three simulated load steps of the Rolls-Royce REM.
reduce the cost of factorization = | _
Minimizing cost is NP-complete <€ hput processing >

Approximate with nested dissection

Factorization scales better

20

Reordering Redistribute, factor and solve
(538 sec.) (38, 282, & 5 sec.)

10:30 PM 10:45 PM 11:00 PM 11:15PM 11:30 PM 11:45 PM 12:00 AM 12:15 AM

0

LS-DYNA memory usage (rank 0) vs. time on NCSA Blue Waters
256 MPI ranks, 8 threads each

Rolls-Royce Representative Engine Model (REM)
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Reordering with nested dissection

LS-GPart nested dissection algorithm

For each domain:
Coarsen graph

NP-complete
Project to fine graph
Refine

Remove separator
Recurse on resulting sub-domai

Rolls-Royce impellor
Solid model
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Graph partitioning as an Ising model (

Zm) wy e

eV ijeE Hz—’
penalty B for
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penalize conﬁg ‘h edge btwn
O O O that doesn’t bisect easwoeifgsets
SolutionsT H All possible solutions Energy
___ 101 .+ 44 c Th.e.ob.Jectlve is to
_ minimize the product of
- -+ * 010 * -=-+4++4+ - -+ + - 1
x"*H*x
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-+ + 1
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J Phy A19 1605 (1986)
Frontiers in Physics 2, 5 (2014)
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Encoding and solutions considered

* The are multiple possible encodings and multiple possible solution algorithms

* We examined two of each ,
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Early results S 5
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Summary

Machine learning has increased the demand for computing power
Demand is growing faster than Moore’s Law
Meanwhile, Moore’s Law itself it slowing down

We have entered a new era of innovation in computing technology
Primarily privately funded this time around
Driven by advertising

This presents us with a rich new set of potential accelerators to explore
Look beyond GPUs
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