A Changing Landscape

Jason Cong², Konstantis Daloukas¹, Nate Earnest-Noble³, Kostas Kafousas¹, Sophia Kolak⁴, Yorgos Koutsoyannopoulos¹, <u>Bob Lucas¹</u>, Hamed Mohamedbagherpoor³, Francois-Henry Rouet¹, and Linghao Song²

¹Ansys, ²UCLA, ³IBM, ⁴CMU

June 22, 2023

Past era of innovation

- The mid-1980s saw the emergence of CMOS as a viable semiconductor technology
 - Low cost, low power, and high-volume components led to "commercial off the shelf" (COTS) strategy
- Unbounded demand for computing in science and national security
 - Public funding for computer science research
- A decade of innovation in computer architecture and parallel programming
 - Communicating sequential processes, shared memory, data parallel, systolic, dataflow, etc.
- Thomas Sterling ruined it for all of us
 - He invented the Linux cluster
 - Cheap hardware
 - Free software

Déjà vu: we have entered a new era of innovation

- Dennard scaling has ended
- Moore's Law is slowing
- Yet, demand is growing
- Specialized systems are increasingly attractive

D.E. Shaw's Anton (drug design) "General purpose" GPUs

TPUs and DPUs

Neuromorphic (IBM True North)

Annealers for optimization (Fujitsu, Toshiba and D-Wave)

ML start ups including:

Cerebras (wafer scale integration)

Samba Nova (reconfigurable data flow)

Quantum computers

• Which of these can we exploit?

Anton

D-Wave

Graphical Processing Units (GPUs)

- Familiar to this community
 - MUMPS uses them
- More computing power than their host
 - Slower clocks, but an order-of-magnitude more ALUs
 - Off-load DGEMM and other compute-bound functions
 - O(N²) data transfer versus O(N³) floating point operations
 - IBM's ESSL does this transparently
 - Write more sophisticated functions in CUDA (or HIP, or SYCL)
- More memory bandwidth than their host
 - HBM provides an order-of-magnitude more main memory bandwidth
 - An order of magnitude less memory volume
 - Off-load memory bandwidth bound functions
 - E.g., iterative solvers dominated by sparse matrix multiply

Nvidia Hopper

Accelerated Processing Units (APUs)

- AMD devices mixing CPU and GPU
 - On the same for game consoles
 - In the same socket for HPC
- Only one physical memory
 - Upcoming MI300A CPUs and GPUs will share 128 GB of HBM
 - Will be launched at SC23
 - No DDR for the CPUs
 - Should eliminate the CPU <-> GPU data copying bottleneck
- Open questions
 - Will this enable exploiting finer-grained computations on GPUs?
 - Will we be able to use OpenMP 5 directives effectively?
 - Will kernel launch times or other overheads still limit broader utility of GPUs?

Field Programmable Gate Array (FPGA)

- "Sea of gates"
 - First brought to market in 1985 by Xilinx
 - User programs logical units (LUTS) and their interconnect
 - Create your own custom circuit
 - Slower and more power-hungry than an ASIC
 - Widely used in networking systems
 - Reconfigure hardware in the field with software patches
- Programmable Array of Memory
 - World's first attempt to make an FPGA-based accelerator
 - DEC Paris Research Center
- SPLASH
 - First attempt in the US
 - My wife was one of four people who could program it

How can an FPGA help?

- GPUs were initially used for compute intensive functions
 - Factor large frontal matrices
- Now GPU memory bandwidth is often more important
 - Sparse matrix vector multiplication
 - Algebraic multigrid
- FPGAs are cheaper and have lower power consumption than GPUs
- FPGAs now have HBM too
 - Xilinx U280 has 8 GB and 460 GB/s
 - Ansys joined UCLA Prof. Jason Cong's Center for Domain-Specific Computing (CDSC)
 - Exploring preconditioned Conjugate Gradients

The Jacobi Preconditioned Conjugate Gradient (JPCG) Solver

Algorithm 1 Jacobi preconditioner conjugate gradient solver for solving a linear system $\mathbf{A} \cdot \vec{\mathbf{x}} = \vec{\mathbf{b}}$.

Require:

(1) matrix A, (2) Jacobi preconditioner M, (3) reference vector $\vec{\mathbf{b}}$, (4) initial solution vector $\vec{\mathbf{x}}_0$, (5) convergence threshold τ , and (6) maximum iteration number N_{max} .

Ensure:

A solution vector $\vec{\mathbf{x}}$.

```
1: \vec{\mathbf{r}} \leftarrow \vec{\mathbf{b}} - \mathbf{A} \cdot \vec{\mathbf{x}}_0
  2: \vec{\mathbf{z}} \leftarrow \mathbf{M}^{-1} \cdot \vec{\mathbf{r}}
  3: \vec{\mathbf{p}} \leftarrow \vec{\mathbf{z}}
  4: \mathbf{r}\mathbf{z} \leftarrow \mathbf{\vec{r}}^{\top} \cdot \mathbf{\vec{z}}
  5: \mathbf{r} \leftarrow \vec{\mathbf{r}}^\top \cdot \vec{\mathbf{r}}
   6: for (0 \le i < N_{\text{max}} \text{ and } \text{rr} > \tau) do
                   \mathbf{a}\mathbf{\ddot{p}} \leftarrow \mathbf{A} \cdot \mathbf{\vec{p}}
   7:
              \alpha \leftarrow \mathbf{rz}/(\mathbf{\vec{p}}^{\top} \cdot \mathbf{a}\mathbf{\vec{p}})
             \vec{\mathbf{x}} \leftarrow \vec{\mathbf{x}} + \alpha \cdot \vec{\mathbf{p}}
   9:
              \vec{\mathbf{r}} \leftarrow \vec{\mathbf{r}} - \alpha \cdot \vec{\mathbf{ap}}
10:
                   \vec{\mathbf{z}} \leftarrow \mathbf{M}^{-1} \cdot \vec{\mathbf{r}}
11:
              rz new \leftarrow \vec{\mathbf{r}}^{\top} \cdot \vec{\mathbf{z}}
12:
              \vec{\mathbf{p}} \leftarrow \vec{\mathbf{z}} + (rz_new/rz) \cdot \vec{\mathbf{p}}
13:
                    rz \leftarrow rz new
14:
                    \mathbf{r}\mathbf{r} \leftarrow \mathbf{\vec{r}}^{\top} \cdot \mathbf{\vec{r}}
15:
16: end for
```

- Solve A*x=b where A and b are known and x is unknown
- Iteratively refine errors and approach a solution
- Widely used in scientific and engineering computing, including LS-DYNA
 - Default for thermal modeling

Callipepla

- High-Level Synthesis can take days to run
 - Therefore, a PCG accelerator cannot be uniquely designed for each sparse matrix
- Callipepla (California state bird) is streaming architecture for PCG
 - Operates on an arbitrary sparse matrix structure
- Research questions included:
 - How to support an arbitrary problem and terminate accelerated processing on the fly?
 - Main loop termination condition unknown until run time
 - How to coordinate long-vector data flow among processing modules?
 - Off-chip accesses: may waste memory bandwidth
 - On-chip accesses: which vectors and which modules can be kept ina very limited memory
 - How to reduce off-chip memory bandwidth yet maintain the double precision (FP64) accuracy?
 - SpMV dominates the memory bandwidth consumed

Mixed-precision sparse matrix-vector multiplication

- Bandwidth
 - FP32 is better
- Accuracy
 - FP64 is better

THREE MIXED-PRECISION SCHEMES FOR SPMV $\vec{\mathbf{y}} = \mathbf{A} \cdot \vec{\mathbf{x}}$.

	Α	$\vec{\mathbf{x}}$	$\vec{\mathbf{y}}$
Default FP64	FP64	FP64	FP64
Mixed-V1	FP32	FP32	FP32
Mixed-V2	FP32	FP32	FP64
Mixed-V3	FP32	FP64	FP64

©2021 ANSYS, Inc.

Callipepalla architectural components

- U280 HBM FPGA
- Memory modules -> read/write
- Vector control modules -> control vector flows
- Computation modules -> computations, M1-M8
- SpMV: based on Serpens (DAC'22)

Dependency & Three Computation Phases

- The computation modules -> three phases
 - A scalar dependency separates two phases
 - Each vector only rd/wr once within a phase
 - All modules share the same vectors within a phase
- Vector streaming reuse
 - To trigger the processing of individual modules
 - To overlap computation to save processing time
 - To share vectors among modules to save off-chip bandwidth

Early results in LS-DYNA

- AWE nested cylinders benchmark
- AMD Host with Xilinx Alveo Solver | 1st step | 2nd step

Multifrontal	849	2.1
Ref. JPCG	408	N/A
FPGA JPCG	43	50

FPGA timing:Preprocessing28.43Downloading0.77Solving13.96

• Intel Skylake (two AVX512 ALUs), first load step Solver | 1 CPU | 8 MPI

Multifrontal	562	113
JPCG	265	39
ICCG	164	34

Future directions for FPGA R&D

- Multiple FPGAs per host node
 - How many PCI-e channels do you have?
 - Multiple distributed memory hosts
 - Like Nvidia GPUS, Xilinx FPGAs can talk to each other without involving their hosts
- ICCG
 - Requires triangular solves
 - Work in progress with UCLA

Cerebras machine learning startup

- One of over a hundred hardware startups targeting training for machine learning
- Cerebras is unique in that they've gone wafer-scale!
 - Obvious good idea for decades
 - Not easy though. Gene Amdahl tried and failed
 - TSMC is their fab
- Data movement on-chip takes more energy than arithmetic.
 - 100 pJ for a floating-point operation
 - 120 pJ to move an operand 2 cm
- Data movement off-chip takes an order-of-magnitude more energy
 - 2000 pJ to move a bit to DRAM
 - The Cerebras WSE doesn't have multiple chips

Cerebras CS-2 Wafer-Scale Engine

• Good

- Largest "chip" in the World at 46,225 mm²
- 2.6 trillion transistors
- 850,000 32-bit cores, with ~2 PFlop/s peak
- 20 PB/s of memory bandwidth
- 220 Pb/s on-chip network

• Less Good

- 40 GB of SRAM
 - Not much state at each vertex in a neural net
- No high-level programming language
 - TensorFlow and PyTorch
- 15 RU, 23 KW
 - More energy efficient than GPU-based systems

Collaboration with Cerebras and National Energy Technology Lab

- Focus on iterative solvers
 - Not enough memory for MUMPS
- Initially looking at structured, 3D grids
 - First two dimensions map easily to Cerebras processor grid
 - 3rd dimension is local memory
 - Performance of approximately 1 PFlop/s when all processors are busy
- Unstructured grids is work-in-progress

Ansys and quantum computing

- Ansys is involved in quantum computing today.
 - Our Computer Aided Engineering (CAE) tools are being used to design quantum computers.
 - E.g., HFSS is used to design resonators for transmons
- Ansys needs to know if we can use quantum computers to accelerate our CAE tools.
 - We have formed a partnership with IBM to investigate quantum computing.
 - Initial focus on graph partitioning.
- Longer term, Ansys expects quantum computers will enable new CAE markets that are inconceivable today.
 - Simulation of quantum dynamics.

The relative importance of sparse matrix reordering

Rolls-Royce Representative Engine Model (REM)

Reordering with nested dissection

Frontiers in Physics 2, 5 (2014)

The objective is to minimize the product of $x^T * H * x$

Program H so as to add energy penalties to configurations you don't want

Encoding and solutions considered

- The are multiple possible encodings and multiple possible solution algorithms
- We examined two of each

Early results

• Results on 12 and 25qubit IBM quantum computers

© 2021 ANSYS, Inc.

Machine learning has increased the demand for computing power Demand is growing faster than Moore's Law Meanwhile, Moore's Law itself it slowing down

We have entered a new era of innovation in computing technology Primarily privately funded this time around Driven by advertising

This presents us with a rich new set of potential accelerators to explore Look beyond GPUs

