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Past era of innovation

• The mid-1980s saw the emergence of CMOS as a viable semiconductor technology
- Low cost, low power, and high-volume components led to “commercial off the shelf” (COTS) strategy

• Unbounded demand for computing in science and national security
- Public funding for computer science research

• A decade of innovation in computer architecture and parallel programming
- Communicating sequential processes, shared memory, data parallel, systolic, dataflow, etc.

• Thomas Sterling ruined it for all of us
- He invented the Linux cluster
• Cheap hardware
• Free software
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Déjà vu: we have entered a new era of innovation

• Dennard scaling has ended
• Moore’s Law is slowing
• Yet, demand is growing
• Specialized systems are increasingly attractive

D.E. Shaw’s Anton (drug design)
“General purpose” GPUs
TPUs and DPUs
Neuromorphic (IBM True North)
Annealers for optimization (Fujitsu, Toshiba and D-Wave)
ML start ups including:

Cerebras (wafer scale integration)
Samba Nova (reconfigurable data flow)

Quantum computers

• Which of these can we exploit?
D-Wave

Anton
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Graphical Processing Units (GPUs)

• Familiar to this community
- MUMPS uses them

• More computing power than their host
- Slower clocks, but an order-of-magnitude more ALUs
- Off-load DGEMM and other compute-bound functions
• O(N2) data transfer versus O(N3) floating point operations
• IBM’s ESSL does this transparently

- Write more sophisticated functions in CUDA (or HIP, or SYCL)

• More memory bandwidth than their host
- HBM provides an order-of-magnitude more main memory bandwidth
• An order of magnitude less memory volume

- Off-load memory bandwidth bound functions
• E.g., iterative solvers dominated by sparse matrix multiply

Nvidia Hopper
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Accelerated Processing Units (APUs)

• AMD devices mixing CPU and GPU
- On the same for game consoles
- In the same socket for HPC

• Only one physical memory
- Upcoming MI300A CPUs and GPUs will share 128 GB of HBM
• Will be launched at SC23

- No DDR for the CPUs
- Should eliminate the CPU <-> GPU data copying bottleneck

• Open questions
- Will this enable exploiting finer-grained computations on GPUs?
- Will we be able to use OpenMP 5 directives effectively?
- Will kernel launch times or other overheads still limit broader utility of GPUs?
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Field Programmable Gate Array (FPGA)

• “Sea of gates”
- First brought to market in 1985 by Xilinx
- User programs logical units (LUTS) and their interconnect
• Create your own custom circuit
• Slower and more power-hungry than an ASIC

- Widely used in networking systems
• Reconfigure hardware in the field with software patches

• Programmable Array of Memory
- World’s first attempt to make an FPGA-based accelerator
- DEC Paris Research Center

• SPLASH
- First attempt in the US
- My wife was one of four people who could program it

Xilinx U280
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How can an FPGA help?

• GPUs were initially used for compute intensive functions
- Factor large frontal matrices

• Now GPU memory bandwidth is often more important
- Sparse matrix – vector multiplication
- Algebraic multigrid

• FPGAs are cheaper and have lower power consumption than GPUs
• FPGAs now have HBM too

- Xilinx U280 has 8 GB and 460 GB/s
- Ansys joined UCLA Prof. Jason Cong’s Center for Domain-Specific Computing (CDSC)
- Exploring preconditioned Conjugate Gradients
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The Jacobi Preconditioned Conjugate Gradient (JPCG) Solver

• Solve A*x=b where A and b are known and
x is unknown
• Iteratively refine errors and approach a

solution
• Widely used in scientific and engineering

computing, including LS-DYNA
- Default for thermal modeling
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Callipepla

• High-Level Synthesis can take days to run
- Therefore, a PCG accelerator cannot be uniquely designed for each sparse 

matrix

• Callipepla (California state bird) is streaming architecture for PCG
- Operates on an arbitrary sparse matrix structure

• Research questions included:
- How to support an arbitrary problem and terminate accelerated processing 

on the fly?
• Main loop termination condition unknown until run time

- How to coordinate long-vector data flow among processing modules?
• Off-chip accesses: may waste memory bandwidth
• On-chip accesses: which vectors and which modules can be kept ina very limited memory

- How to reduce off-chip memory bandwidth yet maintain the double precision 
(FP64) accuracy?
• SpMV dominates the memory bandwidth consumed
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Mixed-precision sparse matrix-vector multiplication
• Bandwidth

- FP32 is better

• Accuracy
- FP64 is better
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Callipepalla architectural components

• U280 HBM FPGA
• Memory modules -> read/write
• Vector control modules ->

control vector flows
• Computation modules ->

computations, M1-M8
• SpMV: based on Serpens 

(DAC’22)
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Dependency & Three Computation Phases

• The computation modules ->
three phases
- A scalar dependency separates two

phases
- Each vector only rd/wr once within a

phase
- All modules share the same vectors

within a phase
• Vector streaming reuse

- To trigger the processing of individual
modules

- To overlap computation to save
processing time

- To share vectors among modules to
save off-chip bandwidth
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Early results in LS-DYNA

• AWE nested cylinders benchmark
• AMD Host with Xilinx Alveo

Solver  | 1st step | 2nd step
------------------------------------------
Multifrontal |   849 |   2.1
Ref. JPCG |   408 |  N/A
FPGA JPCG |     43 |   50

• Intel Skylake (two AVX512 ALUs), first load step
Solver  | 1 CPU | 8 MPI
------------------------------------------
Multifrontal |   562 |  113
JPCG  |   265 |    39
ICCG  |   164 |    34

FPGA timing:
Preprocessing 28.43
Downloading   0.77
Solving  13.96
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Future directions for FPGA R&D

• Multiple FPGAs per host node
- How many PCI-e channels do you have?
- Multiple distributed memory hosts
• Like Nvidia GPUS, Xilinx FPGAs can talk to each other without involving their hosts

• ICCG
- Requires triangular solves
- Work in progress with UCLA
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Cerebras machine learning startup

• One of over a hundred hardware startups targeting training for machine learning
• Cerebras is unique in that they’ve gone wafer-scale!

- Obvious good idea for decades
• Not easy though. Gene Amdahl tried and failed

- TSMC is their fab

• Data movement on-chip takes more energy than arithmetic.
- 100 pJ for a floating-point operation
- 120 pJ to move an operand 2 cm

• Data movement off-chip takes an order-of-magnitude more energy
- 2000 pJ to move a bit to DRAM
- The Cerebras WSE doesn’t have multiple chips
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Cerebras CS-2 Wafer-Scale Engine

• Good
- Largest “chip” in the World at 46,225 mm2

- 2.6 trillion transistors
- 850,000 32-bit cores, with ~2 PFlop/s peak
- 20 PB/s of memory bandwidth
- 220 Pb/s on-chip network

• Less Good
- 40 GB of SRAM
• Not much state at each vertex in a neural net

- No high-level programming language
• TensorFlow and PyTorch

- 15 RU, 23 KW
• More energy efficient than GPU-based systems
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Collaboration with Cerebras and National Energy Technology Lab

• Focus on iterative solvers
- Not enough memory for MUMPS

• Initially looking at structured, 3D grids
- First two dimensions map easily to Cerebras processor grid
• 3rd dimension is local memory

- Performance of approximately 1 PFlop/s when all processors are busy

• Unstructured grids is work-in-progress
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Ansys and quantum computing

• Ansys is involved in quantum computing today.
- Our Computer Aided Engineering (CAE) tools are being used to design quantum computers.
- E.g., HFSS is used to design resonators for transmons

• Ansys needs to know if we can use quantum computers to accelerate our CAE tools.
- We have formed a partnership with IBM to investigate quantum computing.
- Initial focus on graph partitioning.

• Longer term, Ansys expects quantum computers will enable new CAE markets that 
are inconceivable today.
- Simulation of quantum dynamics.



Input processing

Reordering
(538 sec.)

Redistribute, factor and solve
(38, 282, & 5 sec.)
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The relative importance of sparse matrix reordering
We reorder sparse matrices to 
reduce the cost of factorization

Minimizing cost is NP-complete
Approximate with nested dissection

As you add processors, 
eventually reordering and 
factorization dominate the run 
time.

Factorization scales better

Rolls-Royce Representative Engine Model (REM)

LS-DYNA memory usage (rank 0) vs. time on NCSA Blue Waters
256 MPI ranks, 8 threads each

Three simulated load steps of the Rolls-Royce REM.
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Reordering with nested dissection

LS-GPart nested dissection algorithm
For each domain:

Coarsen graph
Partition coarsened graph

NP-complete
Project to fine graph
Refine
Remove separator
Recurse on resulting sub-domains

Rolls-Royce impellor
Solid model Coarse graph

Partitioned model
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Graph partitioning as an Ising model

• graph bisection algorithm can be described as Ising spin glass [J.

Phys. A19 1605 (1986)]

• since then, huge variety of other NP problems have been also (cliques,

graph coloring, set covers, Hamiltonian cycles, feedback sets, etc...)

[arXiv: 1302.5843]

• general goal: find a “cost function” (Hamiltonian) H whose minima

are the solutions of hard problem

• NEW SLIDE

• for graph bisection, we can choose

H = A
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The objective is to 
minimize the product of
           xT * H * x

Program H so as to add 
energy penalties to 
configurations you don’t 
want

J Phy A19 1605 (1986)
Frontiers in Physics 2, 5 (2014)
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Encoding and solutions considered

• The are multiple possible encodings and multiple possible solution algorithms
• We examined two of each
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Early results

• Results on 12 and 25-
qubit IBM quantum 
computers
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Summary

Machine learning has increased the demand for computing power
Demand is growing faster than Moore’s Law
Meanwhile, Moore’s Law itself it slowing down

We have entered a new era of innovation in computing technology
Primarily privately funded this time around
Driven by advertising

This presents us with a rich new set of potential accelerators to explore
Look beyond GPUs




