MUMPS-BLR inside a preconditioned eigensolver

François-Henry Rouet Ansys, Inc.

June 22th, 2023

Ansys

LS-DYNA multiphysics solver

History:
■ Started at Lawrence Livermore Lab in the 70's by John Hallquist;

- Private company (LSTC) for 30+ years;
- Acquired by Ansys in 2019.

Capabilities:

- Initial focus was mechanical engineering (weapons, car crash...);

■ Strongly-coupled multiphysics added over the years: fluids, electromagnetism...
Linear algebra team of 6 :
■ Two are MUMPS graduates;
■ Sparse, dense; direct, iterative; low-rank; eigensolvers; constraints; reordering. . .
■ MPI, OpenMP, GPUs, and "exotic" architectures.

- Lots of in-house codes, some external codes; MUMPS is one of them.

Eigenanalysis - the vibration problem

Vibration problem in structural mechanics:

- FEM discretization of laws of conservation lead to

$$
M \ddot{u}(t)+K u(t)=0
$$

K stiffness matrix, M mass matrix; real, symmetric, semi-definite.

- Looking for solutions of the form $\phi e^{i \omega t}$ leads to

$$
K \phi=\lambda M \phi \quad \text { with } \lambda=\omega^{2}
$$

Eigenanalysis - the vibration problem

Vibration problem in structural mechanics:

- FEM discretization of laws of conservation lead to

$$
M \ddot{u}(t)+K u(t)=0
$$

K stiffness matrix, M mass matrix; real, symmetric, semi-definite.

- Looking for solutions of the form $\phi e^{i \omega t}$ leads to

$$
K \phi=\lambda M \phi \quad \text { with } \lambda=\omega^{2}
$$

- Eigenvalues are frequencies (squared); the smallest ones matter. Eigenvectors are "mode shapes":

Eigenanalysis - the vibration problem

Vibration problem in structural mechanics:

- FEM discretization of laws of conservation lead to

$$
M \ddot{u}(t)+K u(t)=0
$$

K stiffness matrix, M mass matrix; real, symmetric, semi-definite.

- Looking for solutions of the form $\phi e^{i \omega t}$ leads to

$$
K \phi=\lambda M \phi \quad \text { with } \lambda=\omega^{2}
$$

- Eigenvalues are frequencies (squared); the smallest ones matter. Eigenvectors are "mode shapes":

Other problems can lead to unsymmetric, complex, quadratic eigenvalue problems: rotational dynamics, break squeal. . .

Eigenanalysis - how many modes?

How many modes do analysts want?

- Quick model checking: $O(10)$ modes.
- Typically to find rigid-body modes = zero eigenmodes. Structure (or subpart) floating freely in space. Typically 6 RBMs (translations + rotations over the 3 axes).
- Can point to missing connection or constraint.
- Typical modal analysis: tens or a few hundred of modes.
- One standard criterion is modal effective mass: the amount of mass that the first eigenmodes move along.
- Typically, analysts want 80% or more cumulative mass participation.

■ Automotive Noise-Vibration-Harshness: thousands of modes, low accuracy;

- Maybe 0.1% error for the lowest frequencies then $1 \%-5 \%$ error for the higher ones.
- Sometimes only a few selected entries of the eigenvectors are needed.

Eigenanalysis - solvers

Solvers:
■ Block Shift-Invert Lanczos:

- Uses a direct solver to factor and solve with $K-\sigma M, \sigma$ shift(s).
- Very robust, almost never misses anything. Guided by inertia count/Sturm sequence.
- The Boeing version [Grimes, Lewis, Simon '94] is the gold standard.

■ Subspace iteration: good for a few modes.
■ AMLS (Automated MultiLevel Substructuring [Bennighof '92]): good for coarse approximation of lots of modes.

- LOBPCG (and other preconditioned eigensolvers): see next.
- Davidson methods: popular for some fields like Quantum Chemistry, haven't seen it much for mechanics.

LOBPCG

Locally Optimal Block Preconditioned Conjugate Gradient [Knyazev '01]:

- Rayleigh quotient minimization technique; $\lambda(u)=\frac{u^{T} K u}{u^{T} M u}$.
- Minimization done over a subspace spanned by:
- U current eigenvector approximations;
- W preconditioned residuals; does NOT need an "exact" solve like Lanczos.
- P search directions.
- Algorithm in a nutshell:

Repeat until residual norms are small enough:

1. M-orthogonalize W against U and P, then W itself.
2. Rayleigh-Ritz procedure on the projected eigenproblem $\widehat{K} \widehat{X}=\widehat{M} \widehat{\Lambda} \widehat{X}$

$$
\begin{aligned}
& \widehat{K}=\left[\begin{array}{lll}
U & P & W
\end{array}\right]^{T} K\left[\begin{array}{lll}
U & P & W
\end{array}\right] \\
& \widehat{M}=\left[\begin{array}{lll}
U & P & W
\end{array}\right]^{T} M\left[\begin{array}{lll}
U & P & W
\end{array}\right]
\end{aligned}
$$

3. Update the search space: $P \leftarrow W \widehat{X}_{W}+P \widehat{X}_{P}, \quad X \leftarrow X \widehat{X}_{X}+P$

■ The BLOPEX paper [Knyazev et al. '07] has practical recommendations.

LOBPCG in LS-DYNA

LOBPCG code:
■ Serial code implemented by Eugene Vecharynski (Knyazev's student).

- Distributed-memory implementation is fairly straightforward.
- Eigenpairs are computed in blocks, using shifts.

Choice of preconditioner:
■ For our mechanical problems, simple preconditioners (block diagonal, ILU0...) simply don't cut it.

- Multigrid can work but is very finicky, needs lots of physical info.
- MUMPS-BLR is very attractive thanks to the tunable accuracy.

LOBPCG in LS-DYNA - MUMPS usage

MUMPS usage:
■ MUMPS 5.6.0.c, ifort + gcc + Intel MKL.

- Distributed matrix $(\operatorname{ICNTL}(18)=3)$, distributed dense RHS and solution.

■ Ordering with ParMETIS or our partitioner LS-GPart. Waiting on automatic graph compression :-)

- Aggressive scheduling is on.
- BLR: ICNTL (35) $=2$.

■ Simple sequences of calls, 1 MUMPS instance:

- Analyze once;
- Factor, solve, solve, solve...
- New shift σ : factor $K-\sigma M$, solve, solve, solve.... (New shift doesn't change the structure.)
-
- Release instance.

A first example

Synthetic problem:

- Regular grid of solid elements (cubes), elastic material.

■ Stiffness matrix: $n=7.3 \mathrm{M}$; $n z=295.1 \mathrm{M}$. Computing 50 modes.
This is a best-case scenario:

- BLR likes these bulky 3D geometries;

■ Nice mesh, "easy" elements. . . not hard to precondition.
We look at:

- Performance as a function of BLR tolerance ε;

■ Scalability: pure MPI and hybrid parallel using the "MPI to k OMP" feature.

A first example - BLR tolerance ε

■ Number of iterations stays constant till $\varepsilon=10^{-4}$, then LOBPCG breaks down.

- BLR buys us a factor of 4 compared to a full-rank solution.

Factor compression: 19\%; opc compression: 10%.
■ But remember, this is a very easy problem!

A first example - scalability

- Speed-up of 3 out of 8 when going from 32 to 256 cores.
- Hybrid parallelism using the "MPI to k OMP" feature helps at high core count.
- The triangular solve is the limiting factor.

A real-life example

9M element electric pick-up truck:
■ Discretized with solids, shells, beams... with different integration rules...

- 30+ types of materials: metals, glass, rubber, foam. . .
- Constraints and boundary conditions: rigid bodies, joints, spotwelds, contacts...
- Stiffness matrix: $n=37.8 \mathrm{M} ; n z=1.29 \mathrm{~B}$. Computing 50 modes.

This is much harder:
■ Hollow "2.5D" geometry is less amenable to compression.
E.g., the root node is just a few thousands equations, some kind of 1D manifold. (How do you cut a pick-up truck in half?)

- Shell elements are notoriously hard for iterative solvers.
- All kinds of heterogeneities and nonlinearities are present.

A real-life example - BLR tolerance

- Can't push ε as far. Tried GMRES on top of MUMPS-BLR and it didn't help.

■ Now the triangular solve dominates.
■ BLR buys us a factor of 1.8 compared to a full-rank solution. Factor compression: 64\%; opc compression: 21%.

A real-life example - scalability

■ Pure MPI gives a speed-up of 2.3 out of 8 when going from 32 to 256 cores.

- Not sure what's happening with hybrid parallelism for 128 and 256 cores.

A real-life example - trying mixed precision BLR. . .

- The manual recommends combining mixed precision with contribution block compression.
■ For $\varepsilon=10^{-6}$ (our default), this slowed down LOBPCG convergence dramatically (43 vs 14 iterations).
- For $\varepsilon=10^{-8}$:

Mode	CB compr?	Mixed?	Factor(s)	Solve(s)	Memory(GB)
FR	-	-	309.4	2190.1	348.8
BLR	no	no	242.8	1223.6	300.7
BLR	yes	no	278.1	1236.2	280.5
BLR	yes	yes	250.8	1094.6	262.8

Clear impact on memory usage.

An NVH example

2.8M element electric sedan (body in white with battery packs):

- Same "spirit" as the previous model, just smaller.
- Stiffness matrix: $n=11.9 \mathrm{M}$; $n z=405.8 \mathrm{M}$.
- Computing 2000 modes; only want a few digits of accuracy.

Questions:

- Can we lower the LOBPCG tolerance to get to a decent approximation faster?
- How do we setup BLR in these conditions?

An NVH example - results

Tolerances:

- We can decrease the convergence criterion from 10^{-12} to 10^{-8}. Past this, things get iffy, LOBPCG can get lost in some clusters of eigenvalues. The threshold can be increased towards the end of the spectrum.
- We can decrease the BLR tolerance a tiny bit. But still can't be too aggressive ($10^{-4}, 10^{-2} \ldots$ break down) :-(

Results (2000 modes, 40 shifts):

Mode	Analysis	Factor	Solve	LOBPCG	Total	\#iter
Default	26.9	1042.1	5702.3	4448.7	11220.0	659
"Fast"	27.2	920.0	2517.5	2376.1	5840.8	321

Observations:

- Probably not as fast as AMLS, but better quality ($<0.01 \%$ error across the spectrum).
- Orthogonalization becomes a bottleneck.

Conclusion

MUMPS-BLR as a preconditioner for LOBPCG:

- Robust, $\mathrm{BLR}-\varepsilon=10^{-6}$ seems to be the sweetspot. Can be relaxed a bit for a coarse eigensolve but not too much.
■ Fairly scalable. The performance of the triangular solve is the critical piece here: many calls + many RHS every call.

Future work:

- Play with new BLR enhancements.
- Try new orthogonalization schemes (new hire Daniel Bielich).

■ Redistribute our data to conform to the MUMPS distribution/tree (ISOL_loc) after each shift/factorization instead of going back and forth at each iteration.

The End

Thank you for your attention! Any questions?

