Direct solves on a multigrid solver in lattice quantum chromodynamics (QCD)

Henning Leemhuis

How we use MUMPS

Advantages

Disadvantages

Outlook

How we use MUMPS

Advantages

Disadvantages

Outlook

Lattice QCD

 $A \cdot x = b$

2-level method

Figure: fine grid left, coarse grid right

2-level method

$$A_1 = PA_0R = PA_0P^H \tag{1}$$

where $P^H = R \in \mathbb{C}^{n \times s}$ and $P \in \mathbb{C}^{s \times n}$. With n be the number of lattice sites in \mathcal{L} times $\mathsf{DOF}_{\mathcal{L}}$ and s the number of lattice sites in \mathcal{L}_c times $\mathsf{DOF}_{\mathcal{L}_c}$

From 2-level to multigrid

 $\epsilon = \epsilon_{\sf low} + \epsilon_{\sf high}$

While ϵ_{high} is handled by the smoother on \mathcal{L} , ϵ_{low} must be reduced by a coarse grid correction on \mathcal{L}_c .

(2)

From 2-level to multigrid

 $\epsilon = \epsilon_{\sf low} + \epsilon_{\sf high}$

While ϵ_{high} is handled by the smoother on \mathcal{L} , ϵ_{low} must be reduced by a coarse grid correction on \mathcal{L}_c .

(2)

Coarse Grid Correction

Apply 2-level method again \rightarrow true multilevel method $\epsilon_{\sf low} = \epsilon'_{\sf low} + \epsilon'_{\sf high}$

- smoother on intermediate level (ϵ'_{high})
- ▶ solve coarsest level for CGC (ϵ'_{low})

Multigrid method

Keeping geometry intact \rightarrow new lattice with fewer lattice sites while preserving sparsity and structure of the corresponding matrix A.

True multigrid:

What did we do so far?

- starting with a large lattice to simulate a large domain
- reduced the size of the corresponding system drastically
- several smoothing steps in between
- kept sparsity intact
- moved computational work to coarsest (smallest) level
- also moved difficulty to coarsest level (?)

What did we do so far?

- starting with a large lattice to simulate a large domain
- reduced the size of the corresponding system drastically
- several smoothing steps in between
- kept sparsity intact
- moved computational work to coarsest (smallest) level
- also moved difficulty to coarsest level (?)

What else do we need to do?

- solve the (very) illconditioned coarsest grid
- with densely packed eigenvalues close to 0

What did we do so far?

- starting with a large lattice to simulate a large domain
- reduced the size of the corresponding system drastically
- several smoothing steps in between
- kept sparsity intact
- moved computational work to coarsest (smallest) level
- also moved difficulty to coarsest level (?)

What else do we need to do?

- solve the (very) illconditioned coarsest grid
- with densely packed eigenvalues close to 0

How we use MUMPS

Advantages

Disadvantages

Outlook

Parameters for MUMPS

 $\mathsf{DD}\alpha\mathsf{AMG}$ as MPI application \rightarrow a lot of processes and <code>OpenMP</code> available

 \rightarrow distributed, assembled format

A is complex, unsymmetric, well structured and A is implemented stencil-based \rightarrow one must extract I and J coordinates for non-zeros components.

Parameters for MUMPS

 $\mathsf{DD}\alpha\mathsf{AMG}$ as MPI application \rightarrow a lot of processes and <code>OpenMP</code> available

 \rightarrow distributed, assembled format

A is complex, unsymmetric, well structured and A is implemented stencil-based \rightarrow one must extract I and J coordinates for non-zeros components.

Multigrid method requires very rough coarsest solves (tol: $\approx 10^{-1}$) \rightarrow good use of MUMPS' BLR feature.

MUMPS in $DD\alpha AMG$

1. each process sets their Is, Js, A_loc

Henning Leemhuis, Direct solves on a multigrid solver in lattice quantum chromodynamics (QCD)

MUMPS in $DD\alpha AMG$

- 1. each process sets their Is, Js, A_loc
- 2. analyse

MUMPS in DD α AMG

- 1. each process sets their Is, Js, A_loc
- 2. analyse
- 3. factorize

MUMPS in $DD\alpha AMG$

- 1. each process sets their Is, Js, A_loc
- 2. analyse
- 3. factorize
- 4. each process sets their rhs_loc

MUMPS in $DD\alpha AMG$

- 1. each process sets their Is, Js, A_loc
- 2. analyse
- 3. factorize
- 4. each process sets their rhs_loc
- 5. solve with centralized solution in root process

MUMPS in DD α AMG

- 1. each process sets their Is, Js, A_loc
- 2. analyse
- 3. factorize
- 4. each process sets their rhs_loc
- 5. solve with centralized solution in root process
- 6. scatter solution to all processes

How we use MUMPS

Advantages

Disadvantages

Outlook

Coarse grid properties from finest level large domains

- Eigenvalues are dense and close around zero
- many basis vectors for Krylov subspace required
- to use GMRES, several auxillary parameters have to be introduced, with a lot of hand tuning
- tuning parameters offsets the coarsest level matrix even more from its original form

Advantages

Advantages

BERGISCHE UNIVERSITÄT WUPPERTAL

Coarse grid properties from finest level large domains

- Eigenvalues are dense and close around zero
- many basis vectors for Krylov subspace required
- to use GMRES, several auxillary parameters have to be introduced, with a lot of hand tuning
- tuning parameters offsets the coarsest level matrix even more from its original form

BLR approximations accuracy: 10^{-4} good choice for all cases

How we use MUMPS

Advantages

Disadvantages

Outlook

Construction of multigrid

set up

Construction of multigrid

set up

- requires several coarsest level updates
- using more levels reduces factorize time

solve

- solve phase does not make good use of multithreading
- solution is gathered to root process
- MPI_Scatter done by user
- strong scaling hard to keep up with more levels

How we use MUMPS

Advantages

Disadvantages

Outlook

Future possibilities:

future systems will be more ill-conditioned due to

- more realistic physical values
- larger lattice sizes
- \rightarrow even worse for Krylov methods

Future possibilities:

future systems will be more ill-conditioned due to

- more realistic physical values
- larger lattice sizes
- \rightarrow even worse for Krylov methods

Our research group interests:

 stochastic methods with a lot of sequential solves for one factorization

Thank you for your attention!

Questions are welcome

Henning Leemhuis, Direct solves on a multigrid solver in lattice quantum chromodynamics (QCD)