Scaling of normal modes computation in SunShine using MUMPS solver

MUMPS Users Day – 2023 Jason Pavlidis Moduleering

22 June 2023

Table of contents

- SunShine Overview
- MUMPS in SunShine
- Normal Modes Analysis
- Shifted Block Lanczos Method
 - Overview
 - MUMPS Usage
 - Cost Analysis
- Results
- Wishlist
- Conclusion

SunShine Overview

Moduleering is a Research and Development company, the Greek branch of *TechnoStar Co., Ltd. Japan*

SunShine is a modern, powerful and robust multiphysics simulation software, that supports a wide variety of analysis needed in engineering:

- Structural linear / nonlinear analysis
- Normal modes analysis
- Buckling analysis
- Complex eigenvalue analysis
- Frequency / Transient response analysis
- Steady-state / Transient heat transfer analysis
- Electrostatic / Magnetostatic analysis

MUMPS in SunShine

SunShine uses various MUMPS features to enhance its performance and its capabilities.

Distributed factorization and solution

Distributed right-hand side / solution vector

Out-of-core factorization and solution

Null pivot detection

SunShine History

Normal Modes Analysis

Natural frequencies and normal modes characterize the basic dynamic behavior of a structure.

They can be computed using the equation of motion for undamped free vibration.

 $[M][\ddot{u}] + [K][u] = 0 \xrightarrow{u = \{\phi\} \sin\omega t}$ $([K] - \omega^2[M])\{\phi\} = 0 \Longrightarrow$ $([K] - \lambda[M])\{\phi\} = 0 \Longrightarrow$ $[K]\{\phi\} = \lambda[M]\{\phi\}$

Generalized eigenproblem with real symmetric matrices. We are usually interested to a few of the smallest eigenvalues.

6

Shifted Block Lanczos

A very robust and efficient method to compute a few eigenpairs of large sparse matrices on a desired frequency interval.

Instead of

$$Kx = \lambda Mx$$

Use spectral transformation and solve

$$M(K - \sigma M)^{-1}Mx = \mu Mx$$
 , $\mu = \frac{1}{\lambda - \sigma}$

The method can be described by the following transformation

$$Q_{j}^{T}M(K - \sigma M)^{-1}MQ_{j} = T_{j} \qquad T_{j} = \begin{bmatrix} A_{1} & B_{2} & 0 & \dots & 0 \\ B_{2} & A_{2} & B_{3}^{T} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & B_{j-1} & A_{j-1} & B_{j}^{T} \\ 0 & \cdots & 0 & B_{j} & A_{j} \end{bmatrix}$$

Λ

7

MUMPS Usage in Lanczos

Linear system solution

$$(K - \sigma M) X = B$$

Computation of Inertia

$$(K - \sigma M) = LDL^T$$

Number of negative pivots in D \longrightarrow number of eigenvalues $\lambda < \sigma$

Null pivot in D $\longrightarrow \sigma$ is very near to an eigenvalue

Very important information to choose a new shift and seek for remaining eigenvalues

Lanczos Cost Analysis

Algorithm 1 Shifted Block Lanczos algorithm

for
$$j = 1, ..., m$$
 do
 $U_j = \boxed{(K - \sigma M)^{-1} (MQ_j)} - Q_{j-1} B_{j-1}^T$
 $A_j = U_j^T (MQ_j)$
 $R_{j+1} = U_j - Q_j A_j$
 $Q_{j+1} B_{j+1} = qr(R_{j+1})$ such that $Q_{j+1}^T MQ_{j+1} = 1$

 $VDV^T = eig(T_j)$ and check for convergence

Reorthogonalize Q_{j+1} and Q_j end for Y = QVreturn (D, Y)

- The structure of matrix $K \sigma M$ does not change with shift value so we can analyse only once
- We factorize once for each shift value and solve in each iteration
- Factorization and solution phases require 70% + of the total execution time

Model 6M | Solid | 100 modes

Benchmark Environment

Hardware Configuration			Software Configuration		
Nodes	2		OS	CentOS Linux 7	
CPU / node	2 x AMD EPYC 7301 16-Core / 32-Thread		MUMPS	5.5.1	
Cores / node	32		Analysis	METIS	
RAM / node	250 GB		Factorization	Both in-core and out-of-core	
Disk / node	2TB NVME		Solve	Distributed right-hand side / distributed solution	

Model	# DOFs	# Non zeros	Element Type
Model 1	6M	257M	Solid - Ctetra10
Model 2	12M	477M	Solid – Ctetra10
Model 3	7M	117M	Shell – Cquad4/Ctria3
Model 4	12M	199M	Shell – Cquad4/Ctria3

Results (1/2) Solid elements

Model 1 | 6M DOFs

■ Lanczos ■ Solve ■ Factorize

Model 2 | 12M DOFs

■ Lanczos ■ Solve ■ Factorize

Speedup

Results (2/2) Shell elements

Model 3 | 6M DOFs 16.0 9000 16.0 3900 14.3 14.0 3892 8<mark>67</mark>9 14.0 13.4 7500 3250 12.0 13.7 12.0 11.2 Time (sec) 6000 2600 10.0 10.3 9.9 Time (sec) 10.0 Speedup speedup 8.0 8.0 4500 1950 6.8 6.0 6.0 1300 3000 2.0 1161 **3**331 3.4 1428 4.0 4.0 3.8 1300 2<mark>67</mark>6 633 283 149 650 1500 1278 348 2.0 399 2.0 , 160 75 98 0 0.0 0.0 0 16 32 2 x32 32 2 x 32 1 2 4 8 1 2 4 8 16 nprocess nprocess Lanczos Solve Factorize ■ Total ■ Solve ■ Factorize

Model 4 | 12M DOFs

BLR usage in Lanczos

One factorization and many solve steps

MUMPS Block Low-Rank feature

- Reduce the number of FLOPS in factorization and solve operations
- ✓ Reduce memory footprint
- Correlation between BLR parameter ε and the accuracy of the eigenvalues is unknown
- Reduced number of FLOPS may not result in proportionally reduced wall time

lgorithm 1 Shifted Block Lanczos algorithm
for $j = 1, \ldots, m$ do
$U_{j} = \left[(K - \sigma M)^{-1} (MQ_{j}) \right] - Q_{j-1} B_{j-1}^{T}$
$A_j = \overline{U_j^T(MQ_j)}$
$R_{j+1} = U_j - Q_j A_j$
$Q_{j+1}B_{j+1} = qr(R_{j+1})$ such that $Q_{j+1}^T M Q_{j+1} = I$
$VDV^T = eig(T_j)$ and check for convergence
Reorthogonalize Q_{j+1} and Q_j
end for
Y = QV
return (D, Y)

Wish list

Sparse right-hand side

- ✓ Reduce cost of scattering data
- Accelerate the solution phase
- × Only centralized input

Distributed right-hand side

- ✓ Avoid gathering and scattering data
- ✓ Reduce memory footprint on the host
- × Only for dense data

Distributed sparse right-hand side

- $\checkmark\,$ Avoid gathering and scattering data
- $\checkmark\,$ Accelerate the solution phase

Conclusion

- Distributed scaling of MUMPS library result in an eigensolver that can handle large problems efficiently
 - Models with solid elements are benefited the most

 Block Low Rank feature may improve the performance of the eigensolver even more

THANK YOU

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**