Reducing communications and memory costs of a parallel Block Low-Rank solver

P. Amestoy¹ O. Boiteau² A. Buttari³ <u>M. Gerest^{2,4}</u> F. Jézéquel⁴ J.-Y. L'Excellent¹ T. Mary⁴ ¹Mumps Technologies ²EDF R&D ³CNRS-IRIT ⁴Sorbonne Université-CNRS-LIP6

MUMPS User Days, 22 June 2023

The multifrontal method

- Solving sparse linear system Ax = b
 - Factorization A = LU
 - Solve triangular systems Ly = b and Ux = y
- Multifrontal method: we need to compute partial LU factorizations of several dense matrices

Frontal matrix at each node: partial LU factorization

The multifrontal method

- Solving sparse linear system Ax = b
 - Factorization A = LU
 - Solve triangular systems Ly = b and Ux = y
- Multifrontal method: we need to compute partial LU factorizations of several dense matrices

Frontal matrix at each node: partial LU factorization

• Block Low-Rank (BLR) compression of a dense matrix: we try to compress the off-diagonal blocks:

- Low-rank approximation with accuracy ε , controlled by the user
- *U*, *V*, and the rank *r* are chosen so that $||B UV^T|| \le \varepsilon$
- Example: truncated SVD or truncated QR decomposition

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. "Improving Multifrontal Methods by Means of Block Low-Rank Representations". SIAM SISC (2015).

- Forward elimination: solve Lx = b, bottom-up traversal of the elimination tree
- We solve a triangular system at each node
- Possibly several right-hand sides $\rightarrow X$ has n_{rhs} columns

A BLR frontal matrix and its right-hand sides X

¹FS: Fully-Summed variables

4/17

²CB: Contribution Block, to be eliminated in another front

Rig	ht-looking algorithm
1:	for $j \in FS$ do
2:	$X_j \leftarrow L_{jj}^{-1} X_j$
3:	for $i > j$ do
4:	$X_i \leftarrow X_i - U_{ij}(V_{ij}^T X_j)$
5:	end for
6:	end for

- Forward elimination: solve Lx = b, bottom-up traversal of the elimination tree
- We solve a triangular system at each node
- Possibly several right-hand sides \rightarrow X has n_{rhs} columns

'Right-looking"	algorithm,	step j	= 3
-----------------	------------	--------	-----

^{4/17} ²CB: Contribution Block, to be eliminated in another front

Right-looking algorithm
1: for $j \in FS$ do
2: $X_j \leftarrow L_{jj}^{-1} X_j$
3: for $i > j$ do
4: $X_i \leftarrow X_i - U_{ij}(V_{ij}^T X_j)$
5: end for
6: end for

¹FS: Fully-Summed variables

Objectives

- Motivation: the BLR triangular solve is memory-bound
- Objective: Reduce data movements \rightarrow obtain time reduction

¹https://mumps-solver.org

5/17 ²https://www.calmip.univ-toulouse.fr/

Objectives

- Motivation: the BLR triangular solve is memory-bound
- Objective: Reduce data movements \rightarrow obtain time reduction
- Outline:
 - Reduce data access to the factors, using mixed precision
 - Reduce data access **to the right-hand sides** (RHS), changing the order of the operations

¹https://mumps-solver.org

5/17 ²https://www.calmip.univ-toulouse.fr/

Objectives

- Motivation: the BLR triangular solve is memory-bound
- Objective: Reduce data movements \rightarrow obtain time reduction
- Outline:
 - Reduce data access to the factors, using mixed precision
 - Reduce data access **to the right-hand sides** (RHS), changing the order of the operations
- Implementation in multifrontal solver MUMPS¹
- Validation on industrial problems
- Experiments done on Olympe supercomputer (CALMIP², Toulouse)

¹https://mumps-solver.org

^{5/17 &}lt;sup>2</sup>https://www.calmip.univ-toulouse.fr/

BLR in mixed precision

A standard (uniform precision) low-rank approximation $B \approx UV^{T}$

- In a low-rank approximation, the last columns may be stored in lower precision (→ small singular values)
- Same level of accuracy
- See article:

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Mixed Precision Low-Rank Approximations and Their Application to Block Low-Rank Matrix Factorization". IMAJNA (2022).

ightarrow Reduced factor size in memory

BLR in mixed precision

A standard (uniform precision) low-rank approximation $B \approx UV^T$

A low-rank approximation in mixed precision

- In a low-rank approximation, the last columns may be stored in lower precision (→ small singular values)
- Same level of accuracy
- See article:

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Mixed Precision Low-Rank Approximations and Their Application to Block Low-Rank Matrix Factorization". IMAJNA (2022).

ightarrow Reduced factor size in memory

Product LR block \times RHS in mixed precision

• The main kernel in BLR solve: product LR block \times RHS

- Most operations are now switched to lower precision
- Mixed precision requires extra accesses to the RHS (a copy in each precision + extra conversion operations)

			factor siz	e (% of FR)	
Matrix	N	Factor entries (full-rank)	BLR double	BLR mixed	gain mixed vs double
lfm_aug5M	6E+6	13E+9	46.4%	33.2%	-28%
Queen_4147	4E+6	14E+9	51.8%	39.0%	-25%
Thmgaz	5E+6	18E+9	67.4%	49.8%	-26%
Poisson200	8E+6	30E+9	22.8%	15.8%	-31%
Electrophys	10E+6	22E+9	19.5%	15.7%	-19%

Table: storage gains from mixed precision in MUMPS

- BLR in mixed precision: the memory cost of the factors is reduced
- Reduction of the factor size, up to 31%
- Matrices from SuiteSparse collection and MUMPS' industrial partners

• Run on 2 MPI
$$imes$$
 18 OMP, $arepsilon=10^{-9}$

Mixed precision: time gains (1 RHS)

Matrix	I	precision for BLR
	double	mixed
lfm_aug5M Queen_4147 Thmgaz Poisson200 Electrophys	0.23 0.36 0.45 0.39 0.26	0.18 (-22%) ³ 0.30 (-16%) 0.35 (-22%) 0.36 (-7%) 0.23 (-12%)

Table: Time (in seconds) spent in forward elimination

Matrix Ifm_aug5M:

- Time reduction from mixed precision (double+single): 22%
- Storage reduction from mixed precision: 28%

³gain vs double precision BLR

 $^{9/17}$ ⁴factorization failed because this matrix is numerically singular in single precision

Mixed precision: time gains (1 RHS)

Matrix	I	precision for BI	LR
	double	mixed	single
lfm_aug5M Queen_4147 Thmgaz Poisson200 Electrophys	0.23 0.36 0.45 0.39 0.26	0.18 (-22%) ³ 0.30 (-16%) 0.35 (-22%) 0.36 (-7%) 0.23 (-12%)	0.13 (-41%) ⁵ 0.20 (-43%) 0.25 (-45%) 0.33 (-16%) failed ⁴

Table: Time (in seconds) spent in forward elimination

Matrix Ifm_aug5M:

- Time reduction from mixed precision (double+single): 22%
- Storage reduction from mixed precision: 28%
- Time reduction from single precision: 41%

³gain vs double precision BLR

^{9/17} ⁴factorization failed because this matrix is numerically singular in single precision

Matrix	$n_{ m rhs}$	time for forward elimina	tion (s)	
		BLR double	BLR mixed	gain mixed vs double
lfm_aug5M	1	0.23	0.18	-22%
	250	4.03	4.14	+3%
Queen_4147	1	0.36	0.30	-16%
	250	3.7	3.80	+2%
Thmgaz	1	0.45	0.35	-22%
	250	3.55	3.06	-14%
Poisson200	1	0.39	0.36	-7%
	30	0.56	0.54	-4%
Electrophys	1	0.26	0.23	-12%
	250	3.07	3.03	-1%

⁵Full-rank variant (FR): no BLR compression is used

^{10/17} ⁶OOM: out of memory

Matrix	$n_{ m rhs}$	time	for forwa	rd eliminat	ion (s)	
		FR^5	BLR double	gain BLR vs FR	BLR mixed	gain mixed vs double
lfm_aug5M	1 250	0.40 5.53	0.23 4.03	-43% -27%	0.18 4.14	-22% +3%
Queen_4147	1 250	0.62 5.48	0.36 3.7	-42% -32%	0.30 3.80	-16% +2%
Thmgaz	1 250	0.80 00M ⁶	0.45 3.55	-43% -	0.35 3.06	-22% -14%
Poisson200	1 30	00M 00M	0.39 0.56	-	0.36 0.54	-7% -4%
Electrophys	1 250	00M 00M	0.26 3.07	-	0.23 3.03	-12% -1%

⁵Full-rank variant (FR): no BLR compression is used

^{10/17} ⁶OOM: out of memory

Challenges in the case of multiple RHS

• Why are the gains not as good with multiple RHS than 1 RHS? (in both cases: BLR vs FR and mixed vs double)

• The dominant time cost is no longer accessing the factors, but accessing the RHS

Challenges in the case of multiple RHS

• Why are the gains not as good with multiple RHS than 1 RHS? (in both cases: BLR vs FR and mixed vs double)

• The dominant time cost is no longer accessing the factors, but accessing the RHS

 \rightarrow We need to rethink the communication patterns to minimize the data access to the RHS

Right-looking vs Left-looking communication patterns

• Operations in triangular solve \rightarrow several possible orders

12/17

Right-looking vs Left-looking communication patterns

• Operations in triangular solve \rightarrow several possible orders

- Right-looking: at each step, one "read" operation and many "write" operations on the RHS
- Left-looking: many "reads", one "write"
- In both cases: poor data locality

Hybrid algorithm

• A hybrid algorithm, combination of right-looking and left-looking:

Step k = 3: Access U_{kj} for j < k in left-looking and update block X_k

Step k = 3: Read X_k and V_{ik}^T for i > k in right-looking

- The kernel $UV^T \times RHS$ is decomposed into 2 steps:
 - $W = V^T X$, done in right-looking
 - \circ UW, done in left-looking
- Each block of the RHS is written once and used once \rightarrow locality improved.
- \bullet Need to store $W \to {\rm OK}$ if the ranks are small enough ${}^{13/17}$

Hybrid algorithm

Hybrid algorithm

1: for $k \in FS$ do ▷ Sequential loop for i < k do ▷ Parallel loop (left-looking) 2: $X_{k} \leftarrow X_{k} - U_{ki}W_{ki}$ 3: end for 4: $\boldsymbol{X}_{\boldsymbol{k}} \leftarrow L_{\boldsymbol{k}\boldsymbol{k}}^{-1} \boldsymbol{X}_{\boldsymbol{k}}$ 5: for i > k do ▷ Parallel loop (right-looking) 6. $W_{ik} = V_{ik}^T \boldsymbol{X}_k$ 7: end for 8. • end for 10: for $k \in CB$ do ▷ Parallel loop for $i \in FS$ do Sequential loop (left-looking) 11: $\boldsymbol{X}_{\boldsymbol{k}} \leftarrow \boldsymbol{X}_{\boldsymbol{k}} - U_{ki}W_{ki}$ 12: end for 13: 14: end for

• We also implemented another version of this algorithm, better 7 suited to multicore parallelism

14/17

Communication volume analysis

• **Communication volume** between a **fast memory** (example: cache) and a **slower memory** (example: RAM)

Variant	Comm	unication vol	lume
	Read Only	Write Only	Read/Write
Right-Looking (RL) Left-Looking (LL) Hybrid	2qrb $2qrb + qbn_{rhs}$ $2qrb + qrn_{rhs}$	$qrn_{ m rhs}$	$qbn_{ m rhs}$

q: number of blocks in the factors

b: block size

- Left-looking vs Right-looking: same number of accesses (but "read only" vs "read/write")
- Relative gain hybrid vs left-looking:

$$rac{volume({\sf left-looking})}{volume({\sf hybrid})} pprox rac{1+n_{
m rhs}/(2r)}{1+n_{
m rhs}/b} \xrightarrow[n_{
m rhs} o \infty]{rac{b}{2r}}$$

 $_{15/17}~\rightarrow$ Hybrid: lower communication volume, for all BLR matrices

Hybrid algorithm: time gains

Matrix	$n_{\rm rhs}$	-	lime (s)
		RL	Hybrid
Queen_4147	100	1.9	1.6 (-7%)
$(\varepsilon = 10^{-3})$	250	4.5	4.4 (-3%)
	500	11.8	11.0 (-12%)
Thmgaz	100	1.7	1.5 (-13%)
$(\varepsilon = 10^{-4})$	250	5.6	4.7 (-16%)
	500	12.9	10.8 (-16%)
Poisson200	100	2.0	1.7 (-14%)
($arepsilon=10^{-6}$)	250	5.1	4.1 (-21%)
Helmholtz140	100	2.2	1.9 (-13%)
$(\varepsilon = 10^{-3})$	250	5.7	4.8 (-15%)
	500	12.0	10.3(-14%)

Table: Time spent in forward elimination in MUMPS

Run on 1 MPI \times 18 OMP

16/17

New strategies to **reduce the volume of communications** in BLR triangular solve, and improve performance:

- Improve the access to the factors:
 - Use BLR compression in mixed precision
 - $\circ\,$ Time reductions obtained in MUMPS, up to 22%
- Improve the access to the right-hand sides (if multiple RHS):
 - $\circ\;$ Reorder the operations in order to improve the data locality
 - Time reductions obtained in MUMPS, up to 21%

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Communication avoiding block low-rank parallel multifrontal triangular solve with many right-hand sides". submitted to SIMAX (2023).

Perspectives:

- Combine both approaches (mixed + hybrid)
- Use computations in mixed precision during the factorization (ongoing implementation)

New strategies to **reduce the volume of communications** in BLR triangular solve, and improve performance:

- Improve the access to the factors:
 - Use BLR compression in mixed precision
 - $\circ\,$ Time reductions obtained in MUMPS, up to 22%
- Improve the access to the right-hand sides (if multiple RHS):
 - Reorder the operations in order to improve the data locality
 - Time reductions obtained in MUMPS, up to 21%

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Communication avoiding block low-rank parallel multifrontal triangular solve with many right-hand sides". submitted to SIMAX (2023).

Perspectives:

- Combine both approaches (mixed + hybrid)
- Use computations in mixed precision during the factorization (ongoing implementation)
 THANK YOU