
Reducing communications and
memory costs of a parallel Block
Low-Rank solver

P. Amestoy1 O. Boiteau2 A. Buttari3 M. Gerest2,4

F. Jézéquel4 J.-Y. L’Excellent1 T. Mary4
1Mumps Technologies 2EDF R&D 3CNRS-IRIT 4Sorbonne Université-CNRS-LIP6

MUMPS User Days, 22 June 2023



The multifrontal method

• Solving sparse linear system Ax = b
◦ Factorization A = LU
◦ Solve triangular systems Ly = b and Ux = y

• Multifrontal method: we need to compute partial LU factorizations
of several dense matrices

Matrix A (elimination tree)

A → L
U

Frontal matrix at each node:

partial LU factorization

2/17



The multifrontal method

• Solving sparse linear system Ax = b
◦ Factorization A = LU
◦ Solve triangular systems Ly = b and Ux = y

• Multifrontal method: we need to compute partial LU factorizations
of several dense matrices

L

U

L

U

L
U

L
U

L

U

L
U

L
U

L and U factors

A → L
U

Frontal matrix at each node:

partial LU factorization

2/17



BLR compression

• Block Low-Rank (BLR) compression of a dense matrix: we try to
compress the off-diagonal blocks:

B ≈ U V T

b × b b × r r × b

→

• Low-rank approximation with accuracy ε, controlled by the user

• U, V , and the rank r are chosen so that ∥B − UV T∥ ≤ ε

• Example: truncated SVD or truncated QR decomposition

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weisbecker. “Improving Multi-
frontal Methods by Means of Block Low-Rank Representations”. SIAM SISC (2015).



3/17



Triangular solve

• Forward elimination: solve Lx = b, bottom-up traversal of the
elimination tree

• We solve a triangular system at each node

• Possibly several right-hand sides → X has nrhs columns

L

X

FS1

variables

CB2

variables

b

r b nrhs

b

XFS ← L−1FSXFS

XCB −= LCBXFS

A BLR frontal matrix and its
right-hand sides X

Right-looking algorithm

1: for j ∈ FS do
2: Xj ← L−1

jj Xj

3: for i > j do
4: Xi ← Xi − Uij(V

T
ij Xj)

5: end for
6: end for

1FS: Fully-Summed variables
2CB: Contribution Block, to be eliminated in another front4/17



Triangular solve

• Forward elimination: solve Lx = b, bottom-up traversal of the
elimination tree

• We solve a triangular system at each node

• Possibly several right-hand sides → X has nrhs columns

L

X

FS1

variables

CB2

variables

b

r b nrhs

b

XFS ← L−1FSXFS

XCB −= LCBXFS

”Right-looking” algorithm, step j = 3

Right-looking algorithm

1: for j ∈ FS do
2: Xj ← L−1

jj Xj

3: for i > j do
4: Xi ← Xi − Uij(V

T
ij Xj)

5: end for
6: end for

1FS: Fully-Summed variables
2CB: Contribution Block, to be eliminated in another front4/17



Objectives

• Motivation: the BLR triangular solve is memory-bound

• Objective: Reduce data movements → obtain time reduction

• Outline:

◦ Reduce data access to the factors, using mixed precision
◦ Reduce data access to the right-hand sides (RHS), changing the

order of the operations

• Implementation in multifrontal solver MUMPS1

• Validation on industrial problems

• Experiments done on Olympe supercomputer (CALMIP2,
Toulouse)

1https://mumps-solver.org
2https://www.calmip.univ-toulouse.fr/5/17

https://mumps-solver.org
https://www.calmip.univ-toulouse.fr/


Objectives

• Motivation: the BLR triangular solve is memory-bound

• Objective: Reduce data movements → obtain time reduction

• Outline:
◦ Reduce data access to the factors, using mixed precision
◦ Reduce data access to the right-hand sides (RHS), changing the

order of the operations

• Implementation in multifrontal solver MUMPS1

• Validation on industrial problems

• Experiments done on Olympe supercomputer (CALMIP2,
Toulouse)

1https://mumps-solver.org
2https://www.calmip.univ-toulouse.fr/5/17

https://mumps-solver.org
https://www.calmip.univ-toulouse.fr/


Objectives

• Motivation: the BLR triangular solve is memory-bound

• Objective: Reduce data movements → obtain time reduction

• Outline:
◦ Reduce data access to the factors, using mixed precision
◦ Reduce data access to the right-hand sides (RHS), changing the

order of the operations

• Implementation in multifrontal solver MUMPS1

• Validation on industrial problems

• Experiments done on Olympe supercomputer (CALMIP2,
Toulouse)

1https://mumps-solver.org
2https://www.calmip.univ-toulouse.fr/5/17

https://mumps-solver.org
https://www.calmip.univ-toulouse.fr/


BLR in mixed precision

≈

×

A standard (uniform precision)
low-rank approximation
B ≈ UV T

≈

×

: fp64

: fp32
A low-rank approximation in mixed
precision

• In a low-rank approximation, the last columns may be stored in
lower precision (→ small singular values)

• Same level of accuracy

• See article:

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and T. Mary. “Mixed Preci-
sion Low-Rank Approximations and Their Application to Block Low-Rank Matrix Factorization”. IMAJNA
(2022).



→ Reduced factor size in memory

6/17



BLR in mixed precision

≈

×

A standard (uniform precision)
low-rank approximation
B ≈ UV T

≈

×

: fp64
: fp32

A low-rank approximation in mixed
precision

• In a low-rank approximation, the last columns may be stored in
lower precision (→ small singular values)

• Same level of accuracy

• See article:

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and T. Mary. “Mixed Preci-
sion Low-Rank Approximations and Their Application to Block Low-Rank Matrix Factorization”. IMAJNA
(2022).



→ Reduced factor size in memory

6/17



Product LR block × RHS in mixed precision

• The main kernel in BLR solve: product LR block × RHS

× = × + ×

a copy in fp32

Computed
in fp64

Computed
in fp32

• Most operations are now switched to lower precision

• Mixed precision requires extra accesses to the RHS (a copy in each
precision + extra conversion operations)

7/17



Mixed precision: storage gains

factor size (% of FR)

Matrix N
Factor entries

(full-rank)

BLR

double

BLR

mixed

gain mixed

vs double

lfm aug5M 6E+6 13E+9 46.4% 33.2% -28%

Queen 4147 4E+6 14E+9 51.8% 39.0% -25%

Thmgaz 5E+6 18E+9 67.4% 49.8% -26%

Poisson200 8E+6 30E+9 22.8% 15.8% -31%

Electrophys 10E+6 22E+9 19.5% 15.7% -19%

Table: storage gains from mixed precision in MUMPS

• BLR in mixed precision: the memory cost of the factors is reduced

• Reduction of the factor size, up to 31%

• Matrices from SuiteSparse collection and MUMPS’ industrial
partners

• Run on 2 MPI × 18 OMP, ε = 10−9
8/17



Mixed precision: time gains (1 RHS)

Matrix precision for BLR

double mixed

single

lfm aug5M 0.23 0.18 (-22%)3

0.13 (-41%)5

Queen 4147 0.36 0.30 (-16%)

0.20 (-43%)

Thmgaz 0.45 0.35 (-22%)

0.25 (-45%)

Poisson200 0.39 0.36 (-7%)

0.33 (-16%)

Electrophys 0.26 0.23 (-12%)

failed4

Table: Time (in seconds) spent in forward elimination

Matrix lfm aug5M:

• Time reduction from mixed precision (double+single): 22%

• Storage reduction from mixed precision: 28%

• Time reduction from single precision: 41%

3gain vs double precision BLR
4factorization failed because this matrix is numerically singular in single precision9/17



Mixed precision: time gains (1 RHS)

Matrix precision for BLR

double mixed single

lfm aug5M 0.23 0.18 (-22%)3 0.13 (-41%)5

Queen 4147 0.36 0.30 (-16%) 0.20 (-43%)

Thmgaz 0.45 0.35 (-22%) 0.25 (-45%)

Poisson200 0.39 0.36 (-7%) 0.33 (-16%)

Electrophys 0.26 0.23 (-12%) failed4

Table: Time (in seconds) spent in forward elimination

Matrix lfm aug5M:

• Time reduction from mixed precision (double+single): 22%

• Storage reduction from mixed precision: 28%

• Time reduction from single precision: 41%

3gain vs double precision BLR
4factorization failed because this matrix is numerically singular in single precision9/17



Mixed precision: time gains (multiple RHS)

Matrix nrhs time for forward elimination (s)

FR5

BLR

double

gain BLR

vs FR

BLR

mixed

gain mixed

vs double

lfm aug5M 1

0.40

0.23 0.18 -22%

250

5.53

4.03 4.14 +3%

Queen 4147 1

0.62

0.36 0.30 -16%

250

5.48

3.7 3.80 +2%

Thmgaz 1

0.80

0.45 0.35 -22%

250

OOM6

3.55 3.06 -14%

Poisson200 1

OOM

0.39 0.36 -7%

30

OOM

0.56 0.54 -4%

Electrophys 1

OOM

0.26 0.23 -12%

250

OOM

3.07 3.03 -1%

5Full-rank variant (FR): no BLR compression is used
6OOM: out of memory10/17



Mixed precision: time gains (multiple RHS)

Matrix nrhs time for forward elimination (s)

FR5
BLR

double

gain BLR

vs FR

BLR

mixed

gain mixed

vs double

lfm aug5M 1 0.40 0.23 -43% 0.18 -22%

250 5.53 4.03 -27% 4.14 +3%

Queen 4147 1 0.62 0.36 -42% 0.30 -16%

250 5.48 3.7 -32% 3.80 +2%

Thmgaz 1 0.80 0.45 -43% 0.35 -22%

250 OOM6 3.55 - 3.06 -14%

Poisson200 1 OOM 0.39 - 0.36 -7%

30 OOM 0.56 - 0.54 -4%

Electrophys 1 OOM 0.26 - 0.23 -12%

250 OOM 3.07 - 3.03 -1%

5Full-rank variant (FR): no BLR compression is used
6OOM: out of memory10/17



Challenges in the case of multiple RHS

• Why are the gains not as good with multiple RHS than 1 RHS?
(in both cases: BLR vs FR and mixed vs double)

• The dominant time cost is no longer accessing the factors, but
accessing the RHS

→ We need to rethink the communication patterns to minimize
the data access to the RHS

11/17



Challenges in the case of multiple RHS

• Why are the gains not as good with multiple RHS than 1 RHS?
(in both cases: BLR vs FR and mixed vs double)

• The dominant time cost is no longer accessing the factors, but
accessing the RHS

→ We need to rethink the communication patterns to minimize
the data access to the RHS

11/17



Right-looking vs Left-looking communication patterns

• Operations in triangular solve → several possible orders

L

X

Right-looking (“eager”)

L

X

Left-looking (“lazy”)

Right-looking (RL) algorithm

1: for j ∈ FS do ▷ Sequential loop
2: Xj ← L−1

jj Xj

3: for i > j do ▷ Parallel loop
4: Xi ← Xi − Uij (V

T
ij Xj )

5: end for
6: end for

Left-looking (LL) algorithm

1: for i ∈ FS do ▷ Sequential loop
2: for j < i do ▷ Parallel loop
3: Xi ← Xi − Uij (V

T
ij Xj )

4: end for
5: Xj ← L−1

jj Xj

6: end for
7: for i ∈ CB do ▷ Parallel loop
8: for j ∈ FS do ▷ Sequential loop
9: Xi ← Xi − Uij (V

T
ij Xj )

10: end for
11: end for

12/17



Right-looking vs Left-looking communication patterns

• Operations in triangular solve → several possible orders

L

X

Right-looking (“eager”)

L

X

Left-looking (“lazy”)

• Right-looking: at each step, one “read” operation and many
“write” operations on the RHS

• Left-looking: many “reads”, one “write”

• In both cases: poor data locality

12/17



Hybrid algorithm

• A hybrid algorithm, combination of right-looking and left-looking:

L

X

W

Step k = 3: Access Ukj for j < k in
left-looking and update block Xk

L

X

W

×

Step k = 3: Read Xk and V T
ik for

i > k in right-looking

• The kernel UV T× RHS is decomposed into 2 steps:
◦ W = V TX , done in right-looking
◦ UW , done in left-looking

• Each block of the RHS is written once and used once → locality
improved.

• Need to store W → OK if the ranks are small enough
13/17



Hybrid algorithm

Hybrid algorithm

1: for k ∈ FS do ▷ Sequential loop
2: for j < k do ▷ Parallel loop (left-looking)
3: X k ← X k − UkjWkj

4: end for
5: X k ← L−1kk X k
6: for i > k do ▷ Parallel loop (right-looking)
7: Wik = V T

ik X k
8: end for
9: end for

10: for k ∈ CB do ▷ Parallel loop
11: for j ∈ FS do ▷ Sequential loop (left-looking)
12: X k ← X k − UkjWkj

13: end for
14: end for

• We also implemented another version of this algorithm, better
suited to multicore parallelism14/17



Communication volume analysis

• Communication volume between a fast memory (example:
cache) and a slower memory (example: RAM)

Variant Communication volume

Read Only Write Only Read/Write

Right-Looking (RL) 2qrb qbnrhs
Left-Looking (LL) 2qrb + qbnrhs
Hybrid 2qrb + qrnrhs qrnrhs

q: number of blocks in the factors

b: block size

• Left-looking vs Right-looking: same number of accesses
(but “read only” vs “read/write”)

• Relative gain hybrid vs left-looking:

volume(left-looking)

volume(hybrid)
≈ 1 + nrhs/(2r)

1 + nrhs/b

nrhs→∞−−−−−→ b
2r

→ Hybrid: lower communication volume, for all BLR matrices15/17



Hybrid algorithm: time gains

Matrix nrhs Time (s)

RL Hybrid

Queen 4147 100 1.9 1.6 (-7%)

(ε = 10−3) 250 4.5 4.4 (-3%)

500 11.8 11.0 (-12%)

Thmgaz 100 1.7 1.5 (-13%)

(ε = 10−4) 250 5.6 4.7 (-16%)

500 12.9 10.8 (-16%)

Poisson200 100 2.0 1.7 (-14%)

(ε = 10−6) 250 5.1 4.1 (-21%)

Helmholtz140 100 2.2 1.9 (-13%)

(ε = 10−3) 250 5.7 4.8 (-15%)

500 12.0 10.3 (-14%)

Table: Time spent in forward elimination in MUMPS

Run on 1 MPI × 18 OMP
16/17



Conclusion

New strategies to reduce the volume of communications in BLR
triangular solve, and improve performance:

• Improve the access to the factors:
◦ Use BLR compression in mixed precision
◦ Time reductions obtained in MUMPS, up to 22%

• Improve the access to the right-hand sides (if multiple RHS):
◦ Reorder the operations in order to improve the data locality
◦ Time reductions obtained in MUMPS, up to 21%

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and T. Mary. “Communica-
tion avoiding block low-rank parallel multifrontal triangular solve with many right-hand sides”. submitted
to SIMAX (2023).



Perspectives:

• Combine both approaches (mixed + hybrid)

• Use computations in mixed precision during the factorization
(ongoing implementation)

Thank you

17/17



Conclusion

New strategies to reduce the volume of communications in BLR
triangular solve, and improve performance:

• Improve the access to the factors:
◦ Use BLR compression in mixed precision
◦ Time reductions obtained in MUMPS, up to 22%

• Improve the access to the right-hand sides (if multiple RHS):
◦ Reorder the operations in order to improve the data locality
◦ Time reductions obtained in MUMPS, up to 21%

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent, and T. Mary. “Communica-
tion avoiding block low-rank parallel multifrontal triangular solve with many right-hand sides”. submitted
to SIMAX (2023).



Perspectives:

• Combine both approaches (mixed + hybrid)

• Use computations in mixed precision during the factorization
(ongoing implementation)

Thank you
17/17


	Introduction
	BLR solve in mixed precision
	Algorithm
	Results

	BLR hybrid solve for improving data locality
	Algorithms
	Communication volume analysis
	Results (MUMPS)


