Reducing communications and memory costs of a parallel Block Low-Rank solver

P. Amestoy ${ }^{1} \quad$ O. Boiteau ${ }^{2} \quad$ A. Buttari ${ }^{3} \quad$ M. Gerest ${ }^{2,4}$
F. Jézéquel ${ }^{4}$ J.-Y. L'Excellent ${ }^{1} \quad$ T. Mary ${ }^{4}$
${ }^{1}$ Mumps Technologies ${ }^{2}$ EDF R\&D ${ }^{3}$ CNRS-IRIT ${ }^{4}$ Sorbonne Université-CNRS-LIP6
MUMPS User Days, 22 June 2023

The multifrontal method

- Solving sparse linear system $A x=b$
- Factorization $A=L U$
- Solve triangular systems $L y=b$ and $U x=y$
- Multifrontal method: we need to compute partial LU factorizations of several dense matrices

Frontal matrix at each node: partial LU factorization

Matrix A (elimination tree)

The multifrontal method

- Solving sparse linear system $A x=b$
- Factorization $A=L U$
- Solve triangular systems $L y=b$ and $U x=y$
- Multifrontal method: we need to compute partial LU factorizations of several dense matrices

Frontal matrix at each node: partial LU factorization

- Block Low-Rank (BLR) compression of a dense matrix: we try to compress the off-diagonal blocks:

- Low-rank approximation with accuracy ε, controlled by the user
- U, V, and the rank r are chosen so that $\left\|B-U V^{T}\right\| \leq \varepsilon$
- Example: truncated SVD or truncated QR decomposition

[^0]
Triangular solve

- Forward elimination: solve $L x=b$, bottom-up traversal of the elimination tree
- We solve a triangular system at each node
- Possibly several right-hand sides $\rightarrow X$ has $n_{\text {rhs }}$ columns

A BLR frontal matrix and its right-hand sides X

[^1]$4 / 17 \quad{ }^{2} \mathrm{CB}$: Contribution Block, to be eliminated in another front

Triangular solve

- Forward elimination: solve $L x=b$, bottom-up traversal of the elimination tree
- We solve a triangular system at each node
- Possibly several right-hand sides $\rightarrow X$ has $n_{\text {rhs }}$ columns


```
Right-looking algorithm
    1: for \(j \in F S\) do
    2: \(\quad X_{j} \leftarrow L_{i j}^{-1} X_{j}\)
    3: \(\quad\) for \(i>j\) do
                \(X_{i} \leftarrow X_{i}-U_{i j}\left(V_{i j}^{\top} X_{j}\right)\)
        end for
    end for
```

"Right-looking" algorithm, step $j=3$

[^2]$4 / 17$
${ }^{2}$ CB: Contribution Block, to be eliminated in another front

Objectives

- Motivation: the BLR triangular solve is memory-bound
- Objective: Reduce data movements \rightarrow obtain time reduction
${ }^{1}$ https://mumps-solver.org
${ }^{2}$ https://www.calmip.univ-toulouse.fr/

Objectives

- Motivation: the BLR triangular solve is memory-bound
- Objective: Reduce data movements \rightarrow obtain time reduction
- Outline:
- Reduce data access to the factors, using mixed precision
- Reduce data access to the right-hand sides (RHS), changing the order of the operations

\footnotetext{
${ }^{1}$ https://mumps-solver.org

```
\({ }^{2}\) https://www.calmip.univ-toulouse.fr/

\section*{Objectives}
- Motivation: the BLR triangular solve is memory-bound
- Objective: Reduce data movements \(\rightarrow\) obtain time reduction
- Outline:
- Reduce data access to the factors, using mixed precision
- Reduce data access to the right-hand sides (RHS), changing the order of the operations
- Implementation in multifrontal solver MUMPS \({ }^{1}\)
- Validation on industrial problems
- Experiments done on Olympe supercomputer (CALMIP², Toulouse)

\footnotetext{
\({ }^{1}\) https://mumps-solver.org
\({ }^{2}\) https://www.calmip.univ-toulouse.fr/
}


A standard (uniform precision) low-rank approximation \(B \approx U V^{\top}\)
- In a low-rank approximation, the last columns may be stored in lower precision ( \(\rightarrow\) small singular values)
- Same level of accuracy
- See article:
P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Mixed Precision Low-Rank Approximations and Their Application to Block Low-Rank Matrix Factorization". IMAJNA (2022).
\(\rightarrow\) Reduced factor size in memory


A standard (uniform precision) low-rank approximation \(B \approx U V^{T}\)
- In a low-rank approximation, the last columns may be stored in lower precision ( \(\rightarrow\) small singular values)
- Same level of accuracy
- See article:

> P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Mixed Precision Low-Rank Approximations and Their Application to Block Low-Rank Matrix Factorization". IMAJNA (2022).
\(\rightarrow\) Reduced factor size in memory
- The main kernel in BLR solve: product LR block \(\times\) RHS

- Most operations are now switched to lower precision
- Mixed precision requires extra accesses to the RHS (a copy in each precision + extra conversion operations)

\section*{Mixed precision: storage gains}
\begin{tabular}{lrcccc}
\hline & & \multicolumn{4}{c}{ factor size (\% of FR) }
\end{tabular}

Table: storage gains from mixed precision in MUMPS
- BLR in mixed precision: the memory cost of the factors is reduced
- Reduction of the factor size, up to \(31 \%\)
- Matrices from SuiteSparse collection and MUMPS' industrial partners
- Run on \(2 \mathrm{MPI} \times 18\) OMP, \(\varepsilon=10^{-9}\)

\section*{Mixed precision: time gains (1 RHS)}
\begin{tabular}{lll}
\hline Matrix & \multicolumn{2}{c}{ precision for BLR } \\
\hline & double & mixed \\
\hline lfm_aug5M & 0.23 & \(0.18(-22 \%)^{3}\) \\
Queen_4147 & 0.36 & \(0.30(-16 \%)\) \\
Thmgaz & 0.45 & \(0.35(-22 \%)\) \\
Poisson200 & 0.39 & \(0.36(-7 \%)\) \\
Electrophys & 0.26 & \(0.23(-12 \%)\) \\
\hline
\end{tabular}

Table: Time (in seconds) spent in forward elimination

Matrix Ifm_aug5M:
- Time reduction from mixed precision (double+single): \(22 \%\)
- Storage reduction from mixed precision: 28\%
\({ }^{3}\) gain vs double precision BLR
\(9 / 17\)
\({ }^{4}\) factorization failed because this matrix is numerically singular in single precision

\section*{Mixed precision: time gains (1 RHS)}
\begin{tabular}{llll}
\hline Matrix & \multicolumn{3}{c}{ precision for BLR } \\
\hline & double & mixed & single \\
\hline lfm_aug5M & 0.23 & \(0.18(-22 \%)^{3}\) & \(0.13(-41 \%)^{5}\) \\
Queen_4147 & 0.36 & \(0.30(-16 \%)\) & \(0.20(-43 \%)\) \\
Thmgaz & 0.45 & \(0.35(-22 \%)\) & \(0.25(-45 \%)\) \\
Poisson200 & 0.39 & \(0.36(-7 \%)\) & \(0.33(-16 \%)\) \\
Electrophys & 0.26 & \(0.23(-12 \%)\) & failed \({ }^{4}\) \\
\hline
\end{tabular}

Table: Time (in seconds) spent in forward elimination

Matrix Ifm_aug5M:
- Time reduction from mixed precision (double+single): \(22 \%\)
- Storage reduction from mixed precision: \(28 \%\)
- Time reduction from single precision: \(41 \%\)
\({ }^{3}\) gain vs double precision BLR
9/17
\({ }^{4}\) factorization failed because this matrix is numerically singular in single precision

\section*{Mixed precision: time gains (multiple RHS)}
\begin{tabular}{lcccc}
\hline Matrix & \(n_{\text {rhs }}\) & time for forward elimination (s) & \\
\hline & & \begin{tabular}{c} 
BLR \\
double
\end{tabular} & \begin{tabular}{c} 
BLR \\
mixed
\end{tabular} & \begin{tabular}{c} 
gain mixed \\
vs double
\end{tabular} \\
\hline lfm_aug5M & 1 & 0.23 & 0.18 & \(-22 \%\) \\
& 250 & 4.03 & 4.14 & \(+3 \%\) \\
\hline Queen_4147 & 1 & 0.36 & 0.30 & \(-16 \%\) \\
& 250 & 3.7 & 3.80 & \(+2 \%\) \\
\hline Thmgaz & 1 & 0.45 & 0.35 & \(-22 \%\) \\
& 250 & 3.55 & 3.06 & \(-14 \%\) \\
\hline Poisson200 & 1 & 0.39 & 0.36 & \(-7 \%\) \\
& 30 & 0.56 & 0.54 & \(-4 \%\) \\
\hline Electrophys & 1 & 0.26 & 0.23 & 3.03
\end{tabular}
\({ }^{5}\) Full-rank variant (FR): no BLR compression is used
\(10 / 17{ }^{6} \mathrm{OOM}\) : out of memory

\section*{Mixed precision: time gains (multiple RHS)}
\begin{tabular}{lcccccc}
\hline Matrix & \(n_{\text {rhs }}\) & time for forward elimination (s) & \\
\hline & & FR \(^{5}\) & \begin{tabular}{c} 
BLR \\
double
\end{tabular} & \begin{tabular}{c} 
gain BLR \\
vs FR
\end{tabular} & \begin{tabular}{c} 
BLR \\
mixed
\end{tabular} & \begin{tabular}{c} 
gain mixed \\
vs double
\end{tabular} \\
\hline lfm_aug5M & 1 & 0.40 & 0.23 & \(-43 \%\) & 0.18 & \(-22 \%\) \\
& 250 & 5.53 & 4.03 & \(-27 \%\) & 4.14 & \(+3 \%\) \\
\hline Queen_4147 & 1 & 0.62 & 0.36 & \(-42 \%\) & 0.30 & \(-16 \%\) \\
& 250 & 5.48 & 3.7 & \(-32 \%\) & 3.80 & \(+2 \%\) \\
\hline Thmgaz & 1 & 0.80 & 0.45 & \(-43 \%\) & 0.35 & \(-22 \%\) \\
& 250 & \(00 M^{6}\) & 3.55 & - & 3.06 & \(-14 \%\) \\
\hline Poisson200 & 1 & \(00 M\) & 0.39 & - & 0.36 & \(-7 \%\) \\
& 30 & \(00 M\) & 0.56 & - & 0.54 & \(-4 \%\) \\
\hline Electrophys & 1 & \(00 M\) & 0.26 & - & 0.23 & \(-12 \%\) \\
& 250 & \(00 M\) & 3.07 & - & 3.03 & \(-1 \%\) \\
\hline
\end{tabular}
\({ }^{5}\) Full-rank variant (FR): no BLR compression is used
10/17 \({ }^{6}\) OOM: out of memory

\section*{Challenges in the case of multiple RHS}
- Why are the gains not as good with multiple RHS than 1 RHS? (in both cases: BLR vs FR and mixed vs double)
- The dominant time cost is no longer accessing the factors, but accessing the RHS

\section*{Challenges in the case of multiple RHS}
- Why are the gains not as good with multiple RHS than 1 RHS? (in both cases: BLR vs FR and mixed vs double)
- The dominant time cost is no longer accessing the factors, but accessing the RHS
\(\rightarrow\) We need to rethink the communication patterns to minimize the data access to the RHS
- Operations in triangular solve \(\rightarrow\) several possible orders


Right-looking ("eager")
```

Right-looking (RL) algorithm
for $j \in F S$ do $\quad \triangleright$ Sequential loop
$X_{j} \leftarrow L_{j j}^{-1} X_{j}$
for $i>j$ do $\quad \triangleright$ Parallel loop
$X_{i} \leftarrow X_{i}-U_{i j}\left(V_{i j}^{\top} X_{j}\right)$
end for
end for

```


Left-looking ("lazy")
Left-looking (LL) algorithm
\begin{tabular}{lll} 
1: & for \(i \in F S\) do & \(\triangleright\) Sequential loop \\
2: & for \(j<i\) do & \(\triangleright\) Parallel loop \\
3: & \(X_{i} \leftarrow X_{i}-U_{i j}\left(V_{i j}^{T} X_{j}\right)\) \\
4: & end for & \\
5: \(\quad X_{j} \leftarrow L_{j j}^{-1} X_{j}\) & \\
6: & \\
end for & \\
7: & for \(i \in C B\) do & \(\triangleright\) Parallel loop \\
8: & for \(j \in F S\) do \(\quad \triangleright\) Sequential loop \\
9: & \(X_{i} \leftarrow X_{i}-U_{i j}\left(V_{i j}^{T} X_{j}\right)\) \\
10: & end for \\
11: & end for
\end{tabular}
- Operations in triangular solve \(\rightarrow\) several possible orders

- Right-looking: at each step, one "read" operation and many "write" operations on the RHS
- Left-looking: many "reads", one "write"
- In both cases: poor data locality

\section*{Hybrid algorithm}
- A hybrid algorithm, combination of right-looking and left-looking:


Step \(k=3\) : Access \(U_{k j}\) for \(j<k\) in left-looking and update block \(X_{k}\)


Step \(k=3:\) Read \(X_{k}\) and \(V_{i k}^{T}\) for \(i>k\) in right-looking
- The kernel \(U V^{T} \times\) RHS is decomposed into 2 steps:
- \(W=V^{\top} X\), done in right-looking
- UW, done in left-looking
- Each block of the RHS is written once and used once \(\rightarrow\) locality improved.
- Need to store \(W \rightarrow\) OK if the ranks are small enough

\section*{Hybrid algorithm}

Hybrid algorithm
```

1: for $k \in F S$ do
2: \quad for $j<k$ do
$\boldsymbol{X}_{\boldsymbol{k}} \leftarrow \boldsymbol{X}_{\boldsymbol{k}}-U_{k j} W_{k j}$
end for
$\boldsymbol{X}_{\boldsymbol{k}} \leftarrow L_{k k}^{-1} \boldsymbol{X}_{\boldsymbol{k}}$
for $i>k$ do
$W_{i k}=V_{i k}^{T} \boldsymbol{X}_{k}$
end for
end for
10: for $k \in C B$ do
for $j \in F S$ do
$\boldsymbol{X}_{\boldsymbol{k}} \leftarrow \boldsymbol{X}_{\boldsymbol{k}}-U_{k j} W_{k j}$
end for
14: end for

```
- We also implemented another version of this algorithm, better

\section*{Communication volume analysis}
- Communication volume between a fast memory (example: cache) and a slower memory (example: RAM)
\begin{tabular}{llll}
\hline \multirow{2}{*}{ Variant } & \multicolumn{3}{c}{ Communication volume } \\
& Read Only & Write Only & Read/Write \\
\hline Right-Looking (RL) & \(2 q r b\) & & \(q b n_{\text {rhs }}\) \\
Left-Looking (LL) & \(2 q r b+q b n_{\mathrm{rhs}}\) & & \\
Hybrid & \(2 q r b+q r n_{\mathrm{rhs}}\) & \(q r n_{\mathrm{rhs}}\) & \\
\hline
\end{tabular}
\(q\) : number of blocks in the factors
b: block size
- Left-looking vs Right-looking: same number of accesses (but "read only" vs "read/write")
- Relative gain hybrid vs left-looking:
\[
\frac{\text { volume }(\text { left-looking })}{\text { volume }(\text { hybrid })} \approx \frac{1+n_{\mathrm{rhs}} /(2 r)}{1+n_{\mathrm{rhs}} / b} \xrightarrow{n_{\mathrm{rhs}} \rightarrow \infty} \frac{\boldsymbol{b}}{2 \boldsymbol{r}}
\]

15/17 \(\rightarrow\) Hybrid: lower communication volume, for all BLR matrices

\section*{Hybrid algorithm: time gains}
\begin{tabular}{lrrrr}
\hline Matrix & \(n_{\text {rhs }}\) & \multicolumn{2}{c}{ Time (s) } \\
\hline & & \multicolumn{1}{c}{ RL } & \multicolumn{1}{c}{ Hybrid } \\
\hline Queen_4147 & 100 & 1.9 & 1.6 & \((-7 \%)\) \\
\(\left(\varepsilon=10^{-3}\right)\) & 250 & 4.5 & 4.4 & \((-3 \%)\) \\
& 500 & 11.8 & 11.0 & \((-12 \%)\) \\
\hline Thmgaz & 100 & 1.7 & 1.5 & \((-13 \%)\) \\
\(\left(\varepsilon=10^{-4}\right)\) & 250 & 5.6 & 4.7 & \((-16 \%)\) \\
& 500 & 12.9 & 10.8 & \((-16 \%)\) \\
\hline Poisson200 & 100 & 2.0 & 1.7 & \((-14 \%)\) \\
\(\left(\varepsilon=10^{-6}\right)\) & 250 & 5.1 & 4.1 & \((-21 \%)\) \\
\hline Helmholtz140 & 100 & 2.2 & 1.9 & \((-13 \%)\) \\
\(\left(\varepsilon=10^{-3}\right)\) & 250 & 5.7 & \(4.8(-15 \%)\) \\
& 500 & 12.0 & 10.3 & \((-14 \%)\) \\
\hline
\end{tabular}

Table: Time spent in forward elimination in MUMPS

\section*{Conclusion}

New strategies to reduce the volume of communications in BLR triangular solve, and improve performance:
- Improve the access to the factors:
- Use BLR compression in mixed precision
- Time reductions obtained in MUMPS, up to 22\%
- Improve the access to the right-hand sides (if multiple RHS):
- Reorder the operations in order to improve the data locality
- Time reductions obtained in MUMPS, up to \(21 \%\)
```

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Communica-
tion avoiding block low-rank parallel multifrontal triangular solve with many right-hand sides". submitted to SIMAX (2023).

```

Perspectives:
- Combine both approaches (mixed + hybrid)
- Use computations in mixed precision during the factorization (ongoing implementation)

\section*{Conclusion}

New strategies to reduce the volume of communications in BLR triangular solve, and improve performance:
- Improve the access to the factors:
- Use BLR compression in mixed precision
- Time reductions obtained in MUMPS, up to 22\%
- Improve the access to the right-hand sides (if multiple RHS):
- Reorder the operations in order to improve the data locality
- Time reductions obtained in MUMPS, up to \(21 \%\)
```

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L'Excellent, and T. Mary. "Communica-
tion avoiding block low-rank parallel multifrontal triangular solve with many right-hand sides". submitted to SIMAX (2023).

```

Perspectives:
- Combine both approaches (mixed + hybrid)
- Use computations in mixed precision during the factorization (ongoing implementation)```


[^0]:    P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. "Improving Multifrontal Methods by Means of Block Low-Rank Representations". SIAM SISC (2015).

[^1]:    ${ }^{1}$ FS: Fully-Summed variables

[^2]:    ${ }^{1}$ FS: Fully-Summed variables

