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Scientific challenge 

• Industrial demand for accurate solutions of turbulent compressible flows in 

aerodynamics 

– Flow features: vorticity, turbulence,… 

– Quantities of interest: lift, drag,… 
 

• High-fidelity simulations often imply 

– Large number of discretization elements to tackle complexity (physics, geometry) 

– A physical modeling of more and more complex phenomena 

– And as a result … increasingly large and ill-conditioned linear systems ! 
 

• Robust and efficient parallel strategies for linear systems are mandatory 

– Solutions must be delivered at a prescribed tolerance if required  
 

• Some properties of the corresponding matrices 

– Matrices are real non-symmetric (values) or complex non-hermitian 

– A block-wise structure and a symmetric pattern 
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Scientific challenge 

Places where linear algebra is involved 
 

• Dealing with the linearized equations (Jacobian-vector products) 

– Solve Newton (or pseudo-transient) algorithm  

– Shape optimization 

– Global stability analysis 

– … 
 

• Dealing with adjoint equations (Transposed Jacobian-vector products) 

– Shape optimization 

– Goal-oriented mesh adaptation 

– Resolvent analysis 

– Uncertainty quantification 

– Sensitivity 

– … 
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Physical modeling and numerics – CFD 

where  

𝑞: a vector of conserved quantities, 

𝒙: a vector defining the position in space, 

𝐹: a tensor of conservative fluxes,  

𝑆: a vector of source terms.  

 
𝑞 𝑡 = 0 = 𝑞0 

 

𝜕𝑞

𝜕𝑡
+ 𝛻 ∙ 𝐹 𝑞 = 𝑆 𝑞, 𝒙  

 

 
𝑞 𝑥 ∈ 𝜕Ω = 𝑞𝐵𝐶 

 

Very large number of DoF 

… from 105 (simple 2D flows) up to 1010 (3D flows) ! 



• Most of the CFD computations require fixed point evaluation 
 

 

𝑅 𝑞, 𝑋 = 0 
 

• Implicit discrete Navier-Stokes equations 
 

 



𝜆𝑡
𝐼 −

𝜕𝑅

𝜕𝑞
Δ𝑞 = 𝑅 𝑞, 𝑋  

 

 where  

𝑋: the mesh,  

: a mass matrix, 

𝑡: the time step, 

 𝜆: the CFL number,  
 

 and the explicit residual 𝑅 supposed 𝐶1  
 

 𝑅 𝑞, 𝑋 = −𝛻 ∙ 𝐹 𝑞 + 𝑆(𝑞, 𝑋) 

 

 
6/28 MUD 2023 

Physical modeling and numerics – CFD 



Global stability analysis for oscillatory flows as cylinder (*)  

Flow is decompsed as :  𝑞 = 𝑞𝑏 + 𝑞′  
 

Linearized equations      
𝜕𝑞′

𝜕𝑡
=

𝜕𝑅

𝜕𝑞
 𝑏𝑞′ 

 

Searching solution as     𝑞′ , 𝑡 = 𝑞 ( )𝑒𝜈𝑡 

          Eigenvalue problem       𝐴𝑏 𝑞 = 𝜎𝑞  , with 𝐴𝑏 =
𝜕𝑅

𝜕𝑞
 𝑏 

 

For each couple (𝜎𝑖 , 𝑞𝑖 ) gives 

            𝑞 𝑖: the spatial structure of the 𝑖𝑡ℎ mode 

 𝑅𝑒𝑎𝑙 𝜎𝑖 :  its amplification rate (asymptotically unstable if >0)  

   𝐼𝑚 𝜎𝑖  :  its angular frequency 
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Physical modeling and numerics – Stability Analysis  

* V. Theofilis. Progress in aerospace sciences, 39(4):249–315, 2003. 



Adjoint global stability analysis (*, **) 

 

 
 

The adjoint operator 𝑨∗of 𝑨 is defined relatively to a given scalar product ∙,∙ 𝑄 
 

∀𝒙, 𝒚 :            𝒙, 𝑨𝒚 𝑄 =  𝒙𝑨∗, 𝒚 𝑄  =>  𝑨∗ = 𝑄−1𝑨𝑻 𝑄 
 

Each eigen mode (𝜎𝑖 , 𝑞𝑖 ) has its related adjoint one (  𝜎𝑖, 𝑞𝑖 
∗ ). 

 

Useful to study receptivity of the direct mode. 
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*  D. Sipp, O. Marquet, P. Meliga, and A. Barbagallo. Dynamics and control of global instabilities in open-flows: a linearized approach. 

Applied Mechanics Reviews, 63(3), 2010. 
 

** F. Giannetti and P. Luchini. Structural sensitivity of the first instability of the cylinder wake. Journal of Fluid Mechanics, 581,  2007. 

Physical modeling and numerics – Stability Analysis  



Resolvent analysis for amplificator flows as the flat plate (*,**) 
 

Due to non-normality of 𝑨, some globally stable flows may be exposed to 

instabilities that can grow and break symmetries. The most amplified one can 

be found by applying a forcing 𝜙 on linearized equations 
 

𝜕𝑞′

𝜕𝑡
= 𝐴𝑞′ + 𝜙 

 

Fourier transform: 𝑖𝜔𝑡 𝑞 = 𝐴𝑞 + 𝜙  𝑒𝑖𝜔𝑡  <=>  𝑞 = 𝑱 𝜙  with 𝑱 = 𝑖𝜔𝐼 − 𝐴 −1 
 

Searching the maximum gain: 𝜂2 𝜔 = sup  
𝑞 ,𝑞 𝑄1

𝜙 ,𝜙 
𝑄2

 = sup  
𝑱 𝜙 , 𝑱 𝜙 

𝑄1
 

𝜙 ,𝜙 
𝑄2

   

 

Equivalent to solve the following hermitian EVP:       𝑱𝑯𝑄1𝑱 𝜙 = 𝜂2𝑄2 𝜙   
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*  L.N. Trefethen, A.E. Trefethen, S.C. Reddy, T.A. Driscoll. Hydrodynamic stability without eigenvalues, Science 261, 578–584,1993. 

** D. Sipp, O. Marquet. Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate       

boundary layer. Theor. Comput. Fluid Dyn. 27, 617–635, 2013. 

Physical modeling and numerics – Stability Analysis  
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Usual way to perform Stability Analysis 
 

 

Only a few part of the spectrum is exhibed. 
 

EVP are solved by mean of iterative solver such as the Krylov-Schur (*) solver, 

an Arnoldi based method which iteratively converges towards eigenvalues of 

largest magnitudes. 
 

Global modes (Shift and Invert (**)): 𝑨 − 𝑠𝑰 −1𝑞 =  𝜎  𝑞  and 𝜎 = 𝜎 −1 + 𝑠 
 

Resolvent: 𝑱𝑯𝑄1𝑱 𝜙 = 𝜂2𝑄2 𝜙  or 𝑱 𝑄2
−1𝑱𝑯𝑄1 𝑞 = 𝜂2 𝑞  , with 𝑱 = 𝑖𝜔𝐼 − 𝐴 −1 

 

 

With enough memory, the best practice is the LU factorisation for each operator 

All operators are obtained by mean of A. D. with Tapenade (***) 

*   G. Stewart. A Krylov-Schur Algorithm for Large Eigenproblems. SIMAX, 23(3):601-614, 2002. 

**  K. N. Christodoulou and L. E. Scriven. Finding leading modes of a viscous free surface flow: An asymmetric generalized 

eigenproblem. J Sci Comput, 3(4):355–406,1988. 

***  L. Hascoët, and V. Pascual. The Tapenade automatic  differentiation tool : Principles,model, and specification,   ACM Trans. Math. 

Softw. 39(3) : 20 (2013) 
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Application to flow over flate plate at Mach=4.5                     

A. Poulain (ONERA/DAAA) (*, **) ; NDoF ~ 106  
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*  A. Poulain, C. Content, D. Sipp, G. Rigas, E. Garnier. BROADCAST: A high-order compressible CFD toolbox for stability and 

sensitivity using Algorithmic Differentiation. Computer Physics Communications 283, 108557 (2023). 

** A. Poulain, C. Content, D. Sipp, G. Rigas, E. Garnier. Adjoint-based linear sensitivity of a hypersonic boundary layer to steady 

wall blowing-suction/heating-cooling, arXiv 13 June 2023. 

24 cores of a Cascade 

Lake (4 GB/CPU) 



Application to flow over Cone-Cylinder-Flare (CCF) at Mach=6 

C. Caillaud (CEA-ONERA/DAAA) (*) ; NDoF ~ 107 
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*  C. Caillaud, M. Lugrin, S. Esquieu, C. Content. Global stability analysis of a hypersonic cone-cylinder-flare geometry. 57th 3AF 

International Conference on Applied Aerodynamics, 29-31 March 2023, Bordeaux, France.  



Application to flow over Cone-Cylinder-Flare (CCF) at Mach=6 

C. Caillaud (CEA-ONERA/DAAA) (*) ; NDoF ~ 107 
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*  C. Caillaud, M. Lugrin, S. Esquieu, C. Content. Global stability analysis of a hypersonic cone-cylinder-flare geometry. 57th 3AF 

International Conference on Applied Aerodynamics, 29-31 March 2023, Bordeaux, France.  
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Application to flow over Cone-Cylinder-Flare (CCF) at Mach=6 

C. Caillaud (CEA-ONERA/DAAA) (*) ; NDoF ~ 107 

*  C. Caillaud, M. Lugrin, S. Esquieu, C. Content. Global stability analysis of a hypersonic cone-cylinder-flare geometry. 57th 3AF 

International Conference on Applied Aerodynamics, 29-31 March 2023, Bordeaux, France.  
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Run on super-cluster 

Topaze at CCRT: 

3-4 nodes (512 cores) 

~1.5 TB RAM 

 *  C. Caillaud, M. Lugrin, S. Esquieu, C. Content. Global stability analysis of a hypersonic cone-cylinder-flare geometry. 57th 3AF 

International Conference on Applied Aerodynamics, 29-31 March 2023, Bordeaux, France.  

Application to flow over Cone-Cylinder-Flare (CCF) at Mach=6 

C. Caillaud (CEA-ONERA/DAAA) (*) ; NDoF ~ 107 



Scaling up toward industrial applications on 

unstructured mesh (*) 

• A 3D Navier-Stokes example: Neq = 5, Ncell = 25 M    NDoF = 125 M 

• ONERA Cluster with Intel Cascade Lake nodes (4 GB/CPU) 

• Number of non-zero values of the matrix: NNZ(𝑨) ≃ stencil x Neq × NDoF 

• Finite Volume Spatial Discretization of Order 2 (Stencil ≃ 125) 
 

      Storage of 𝑨 (complex) ~ 1.25 TB 
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*  V. Fer. Scale up of efficient global stability tools in order to characterize specific turbomachineries phenomenons, PhD Thesis, 2022 

Fig: Resolvent Analysis : optimal response 

(top)/forcing (bottom) Fig: bifurcation sketch of sphere flow 



Scaling up toward industrial applications applications 

on unstructured mesh (*) 

 

 

 

 

 

 

• Memory requirement of direct methods is still a bottleneck for industrial cases 

• Krylov iterative Methods (KM) overcome that point  

• But the preconditioning strategy becomes the key issue (***) 

– Classic user parameters: nKM = 120, k = 3 (γ(3) = 3) 
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*   V. Fer. Scale up of efficient global stability tools in order to characterize specific turbomachineries phenomenons, PhD Thesis, 2022 

**  J.Y. L’Excellent, Multifrontal Methods: Parallelism, Memory Usage and Numerical Aspects. Hdr, 2012. 

*** N. Guilbert. Amélioration de l’inversion de grands systèmes creux pour la simulation numérique en mécanique des fluides. 2021. 

Method Estimation Memory NCPU 

 

LU 
𝑁𝑁𝑍 𝑨

7

4/3

 

 

~1000 TB 
 

>250000 

 

KM-ILU(k) 
𝛾 𝑘 × 𝑁𝑁𝑍 𝐴 + 𝑛𝐾𝑀 × 𝑁𝐷𝑂𝐹 

 

 

~ 20 TB 
 

~5000 



Krylov iterative solvers for large-scale systems 
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• We are looking for robust and efficient parallel iterative solvers 
 
 

• Evaluations of several numerical algorithms 

– Deflation techniques                            GCRO-DR                 [Parks, de Sturler et al. ‘06] 

– Flexible preconditioning operator       FGCRO-DR              [Carvalho, Gratton et al., ‘11]    

– Mixed-precision algorithms                                         [Baboulin et al. ‘09] [Arioli, Duff, ’09] 

– Restricted Additive Schwarz preconditioner                                       [Cai, Sarkis, ‘99] 

 

• Baseline strategy if accurate solutions are required 
 

 

 

– FGCRO-DR ( mouter , k, εouter = 10-9 )               ADP global                               

• GMRES (minner , εinner = 0.5 )                         ASP global 

  Restricted Additive Schwarz                 Domain coupling       Precond 

 P = Block-ILU(0)                             PSP local 

 

                          



Krylov iterative solvers for large-scale systems 
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OAT15A airfoil 

 

2D compressible (generic) RANS equations 

Turbulent transonic flow 

Aerodynamic shape optimization problem: 

     Minimization of the drag coefficient (only p contribution) 

  

DG(O4) ; Aghora DG code (*) 

N ~ 3.2 M ; NNZ ~ 802 M 

16 MPI ; Intel Broadwell ; Worst case ~ 300 s Benefits of recycling varying number k of vectors (CHR) 

  

* F. Renac et al. Aghora: A High-Order DG Solver for Turbulent Flow Simulations. IDIHOM: Industrialization of High-Order Methods, Springer book, 2015. 

This work is supported by the French project DGAC/LAMA (Direction Générale de l’Aviation Civile) and by the European project NextSim. 
 

  

Adjoint solutions with Krylov subspace recycling 
 



Krylov iterative solvers for large-scale systems 
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Gains of recycling varying solvers and vector type (CHR, SVD) 

ONERA M6 wing 

 

3D compressible (generic) RANS equations 

Turbulent transonic flow 

Aerodynamic shape optimization problem: 

     Minimization of the drag coefficient (only p contribution) 

  

DG(O4) ; Aghora DG code (*) 

N ~ 20 M ; NNZ ~ 13 B 

176 MPI ; Intel Skylake ; Worst case ~ 420 s 

  

Adjoint solutions with Krylov subspace recycling 
 

  

* F. Renac et al. Aghora: A High-Order DG Solver for Turbulent Flow Simulations. IDIHOM: Industrialization of High-Order Methods, Springer, 2015. 

This work is supported by the French project DGAC/LAMA (Direction Générale de l’Aviation Civile) and by the European project NextSim. 
 



Ongoing research activities 
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Recycling starts at the end of the 11th up to the 21th   

OAT15A airfoil 

 

2D compressible (generic) RANS equations 

Turbulent transonic flow 

Sequence of systems from steady-state calculations 

  

DG(O3) ; Aghora DG code (*) 

N ~ 2 M ; NNZ ~ 288 M 

16 MPI ; Intel Broadwell  

 

• Strategies to select information 

– When to trigger inter-system recycling 

– Type and quality of the vectors 

  

Gains of recycling between consecutive systems 

  

* F. Renac et al. Aghora: A High-Order DG Solver for Turbulent Flow Simulations. IDIHOM: Industrialization of High-Order Methods, Springer book, 2015. 

This work is supported by the French project DGAC/LAMA (Direction Générale de l’Aviation Civile) and by the European project NextSim. 
 



  

Randomized Flexible GMRES with Deflated Restarting* 

 

Ongoing research activities 

 

• LS89 test-case: subsonic flow, steady problem (FV(O2), RANS, SA-negative) 

– Matrix characteristics: N = 115,368 ; NNZ ~ 6 M ; cond(A) ~1014
   

– Preconditioning operator: GMRES + RAS 
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     Stability of Krylov basis varying Gram-Schmidt process                     Sensitivity of deflation (CHR,SVD) and GS (CGS, RGS)     

  

* Y. Jang, L. Grigori, E. Martin, C. Content. Randomized Flexible GMRES with Deflated Restarting, 2023, hal-04072873. 

* This work is funded by DGAC (Direction Générale de l’Aviation Civile) in the frame of the SONICE project. 
 



Ongoing research activities 
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MUMPS-BLR preconditioner for a global strategy with memory constraint  

  

* S. Dubois. Adaptive preconditioning strategies with data compression in CFD. ONERA PhD (2022-2025). 

Approach 

Global matrix 

Approach RAS  

10 subdom 

Overlap 1 



Concluding remarks 

• Direct methods are used as long as the memory limitation is not reached  

• Flexible solvers with Krylov subspace recycling are a promising alternative 

– Capability to address larger problem sizes with robustness/efficiency 

– Significant gains are observed on tough problems 

– Random sketching techniques offer a better numerical stability of Krylov basis 

– Hybrid direct-iterative solvers are of main concern 

– But calibration rules to leverage costs are still needed 

• Convergence to steady-state of stiff problems remains problematic 

– Limitations of first-level preconditioner (numerical efficiency / memory cost) 

• Data compression: MUMPS BLR feature, mixed-precision algorithms… 

– Coupling between domains plays a significant role 

• One-level RAS preconditioner is not enough 

• Coarse space corrections might be explored 

• Parallel scalability ? 
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Thank you for your attention ! 

Any question or remark ? 
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