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about 100 different types

not all may be (inexactly) “factored”
e MatShell (matrix-free)
e MatKAIJ (Kronecker product)

O
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but many can
e MatAIJ (compressed sparse row)
e MatBAIJ (block CSR)
e MatSBAIJ (symmetric BCSR)
e MatNest (nested submatrices)

runtime composability (different types and solvers)
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FEATURES SINCE MUD 2017 IN PETSC INTERFACE

o version 51110 5.6.0
o support for BLR via -mat_mumps_icnt1l_35
o transpose solve and sparse distributed block of RHS

o -mat_mumps_use_omp_threads to convert
processes into threads

o better performance for block matrices via ICNTL(15)
o automatic handling of MatSBAIJ and MatNest
o different PETSc and MUMPS precision (WIP)



COMPLEXITY STUDY, CASE #1

o 3D linear elasticity, piecewise linear FE
o sequential, double-precision, exact LDL" factorization
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— fighting an uphill battle 4
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o 92% of the time (average) in numerical factorization

o FGMRES with a 10~ tolerance, 15 iterations
o still not quite ideal, 20% efficiency
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DOMAIN DECOMPOSITION PRECONDITIONING

o global linear system Ax = b € R"
o 2-way surjection of [1; n] ~ restriction operators

Q
N=2 Q,

Masw = > _ RI(RARD) 'Ry

=1

— not so easy, M., doesn’t scale (numerically) as N — +oo
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o https://github.com/hpddm/hpddm
o spectral coarse correction M_ ... = ZAZ'Z" + My,
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e distributed coarse operator solver (Z'AZ)~"
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HPDDM

https://github.com/hpddm/hpddm
spectral coarse correction M_j,.... = ZAZ'Z" 4+ Mgy,
with Ac = ZTAZ
three instances of MUMPS in a typical preconditioner
e local eigensolver

e local subdomain solver (reuse symbolic factorization)
e distributed coarse operator solver

o

O

o

runtime flexibility
e -pc_hpddm_levels_1_sub_mat_mumps_..
e -pc_hpddm_coarse_mat_mumps_..
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o breaking the complexity of the exact factorization
o low-precision subdomain/coarse solvers
o disclaimer: difficult to beat AMG (when it converges) 8



COMPLEXITY STUDY, CASE #2

o 3D Stokes equation, lowest-order Taylor-Hood FE
o sequential, double-precision, exact LDL" factorization
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— variable block size 9
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COMPLEXITY STUDY, CASE #3

o 3D Maxwell equation, order-two Néedélec FE
o sequential, double-precision, exact LDL" factorization
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PERFORMANCE STUDY FOR THE 2M UNKNOWNS

T T T T T T T
10° E E
oy =
5 F
c i . ]
ot .
o 10% ¢ . 4
G F |—e—Zmumps ~ 3
= | |- - Linear scaling . 1
= 10"k B E
100 I | | | | | | |
N P

Number of MPI processes

o costly symbolic factorization - no ICNTL(15)=1

13



PERFORMANCE STUDY FOR THE 2M UNKNOWNS

103§

102 F
F |—e—ZMumps

| |- - Linear scaling . ]
107 | | == CNTL(7)=10"° .

Time (seconds)

1007 | | | | | | |
N w o Ay (O\xd/brﬁgo

Number of MPI processes

o costly symbolic factorization - no ICNTL(15)=1

o FGMRES with a 10~ tolerance
13



2M UNKNOWNS ON 256 PROCESSES
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2M UNKNOWNS ON 256 PROCESSES
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o FGMRES with a 10~ tolerance

o better convergence with a coarse grid correction
14



FINAL WORDS

o Interoperability of MUMPS with other libraries
o runtime tuning
o composable solvers/preconditioners
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interoperability of MUMPS with other libraries

@)

runtime tuning
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composable solvers/preconditioners

whish list (the one from MUD 2017 is complete!)
e ParMETIS/PT-SCOTCH on a subcommunicator
e easier handling of mixed types
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Thank you!
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