MUMPS IN PETSC AND HPDDM

Pierre Jolivet — Sorbonne Université, CNRS, LIP6 MUMPS User Days, June 23, 2023

https://joliv.et/MUD_2023.pdf

Application Codes

Higher-Level Libraries and Frameworks

Communication and Computational Kernels

• about 100 different types

- about 100 different types
- not all may be (inexactly) "factored"
 - MatShell (matrix-free)
 - MatKAIJ (Kronecker product)

- about 100 different types
- not all may be (inexactly) "factored"
 - MatShell (matrix-free)
 - MatKAIJ (Kronecker product)
- \circ but many can
 - MatAIJ (compressed sparse row)
 - MatBAIJ (block CSR)
 - MatSBAIJ (symmetric BCSR)
 - MatNest (nested submatrices)

- about 100 different types
- not all may be (inexactly) "factored"
 - MatShell (matrix-free)
 - MatKAIJ (Kronecker product)
- \circ but many can
 - MatAIJ (compressed sparse row)
 - MatBAIJ (block CSR)
 - MatSBAIJ (symmetric BCSR)
 - MatNest (nested submatrices)
- runtime composability (different types and solvers)

• version 5.1.1 to 5.6.0

- version 5.1.1 to 5.6.0
- support for BLR via -mat_mumps_icntl_35

- version 5.1.1 to 5.6.0
- support for BLR via -mat_mumps_icntl_35
- transpose solve and sparse distributed block of RHS

- version 5.1.1 to 5.6.0
- support for BLR via -mat_mumps_icntl_35
- $\circ\,$ transpose solve and sparse distributed block of RHS
- -mat_mumps_use_omp_threads to convert processes into threads

- version 5.1.1 to 5.6.0
- support for BLR via -mat_mumps_icntl_35
- $\circ\,$ transpose solve and sparse distributed block of RHS
- -mat_mumps_use_omp_threads to convert processes into threads
- better performance for block matrices via ICNTL(15)
- automatic handling of MatSBAIJ and MatNest

- version 5.1.1 to 5.6.0
- support for BLR via -mat_mumps_icntl_35
- $\circ\,$ transpose solve and sparse distributed block of RHS
- -mat_mumps_use_omp_threads to convert processes into threads
- \circ better performance for block matrices via ICNTL(15)
- automatic handling of MatSBAIJ and MatNest
- different PETSc and MUMPS precision (WIP)

COMPLEXITY STUDY, CASE #1

- 3D linear elasticity, piecewise linear FE
- sequential, double-precision, exact LDL^T factorization

ightarrow fighting an uphill battle

Performance study for the 5M unknowns

• 92% of the time (average) in numerical factorization

Performance study for the 5M unknowns

Number of MPI processes

- 92% of the time (average) in numerical factorization
- $\circ~$ FGMRES with a 10^{-5} tolerance, 15 iterations

Performance study for the 5M unknowns

Number of MPI processes

- \circ 92% of the time (average) in numerical factorization
- $\circ\,$ FGMRES with a 10^{-5} tolerance, 15 iterations
- still not quite ideal, 20% efficiency

 \circ global linear system $Ax = b \in \mathbb{R}^n$

- global linear system $Ax = b ∈ ℝ^n$
- 2-way surjection of [1; n] → restriction operators

- global linear system $Ax = b ∈ ℝ^n$
- 2-way surjection of $\llbracket 1; n \rrbracket$ → restriction operators

$$M_{\rm ASM}^{-1} = \sum_{i=1}^{N=2} R_i^T (R_i A R_i^T)^{-1} R_i$$

- global linear system $Ax = b ∈ ℝ^n$
- 2-way surjection of [1; n] → restriction operators

$$M_{\rm ASM}^{-1} = \sum_{i=1}^{N=2} R_i^T (R_i A R_i^T)^{-1} R_i$$

ightarrow not so easy, $M_{
m ASM}^{-1}$ doesn't scale (numerically) as $N
ightarrow +\infty$

HPDDM

o https://github.com/hpddm/hpddm

• spectral coarse correction $M_{\text{additive}}^{-1} = ZA_C^{-1}Z^T + M_{\text{ASM}}^{-1}$ with $A_C = Z^TAZ$

HPDDM

o https://github.com/hpddm/hpddm

• spectral coarse correction $M_{\text{additive}}^{-1} = ZA_c^{-1}Z^T + M_{\text{ASM}}^{-1}$ with $A_c = Z^T A Z$

- $\circ\,$ three instances of MUMPS in a typical preconditioner
 - local eigensolver (computation of local "Z_i")
 - local subdomain solver $(R_i A R_i^T)^{-1}$
 - distributed coarse operator solver $(Z^TAZ)^{-1}$

HPDDM

o https://github.com/hpddm/hpddm

• spectral coarse correction $M_{\text{additive}}^{-1} = ZA_C^{-1}Z^T + M_{\text{ASM}}^{-1}$ with $A_C = Z^T A Z$

- $\circ\,$ three instances of MUMPS in a typical preconditioner
 - local eigensolver
 - local subdomain solver (reuse symbolic factorization)
 - distributed coarse operator solver
- runtime flexibility
 - -pc_hpddm_levels_1_sub_mat_mumps_...
 - -pc_hpddm_coarse_mat_mumps_...

o breaking the complexity of the exact factorization

- o breaking the complexity of the exact factorization
- low-precision subdomain/coarse solvers

- o breaking the complexity of the exact factorization
- low-precision subdomain/coarse solvers
- disclaimer: difficult to beat AMG (when it converges)

COMPLEXITY STUDY, CASE #2

- 3D Stokes equation, lowest-order Taylor–Hood FE
- sequential, double-precision, exact LDL^T factorization

Performance study for the 3M unknowns

• costly symbolic factorization - no ICNTL(15)=1

Performance study for the 3M unknowns

Number of MPI processes

- costly symbolic factorization no ICNTL(15)=1
- \circ FGMRES with a 10⁻⁵ tolerance

• ASM converges (albeit rather slowly)

- ASM converges (albeit rather slowly)
- Schur complement: inner-outer iterations, ICNTL(15)=-3
- -fieldsplit_0_

- ASM converges (albeit rather slowly)
- Schur complement: inner-outer iterations, ICNTL(15)=-3
- -fieldsplit_0_sub_pc_precision single

COMPLEXITY STUDY, CASE #3

- 3D Maxwell equation, order-two Nédélec FE
- sequential, double-precision, exact LDL^T factorization

Performance study for the 2M unknowns

costly symbolic factorization – no ICNTL(15)=1

Performance study for the 2M unknowns

Number of MPI processes

- costly symbolic factorization no ICNTL(15)=1
- \circ FGMRES with a 10⁻⁵ tolerance

 \circ FGMRES with a 10⁻⁵ tolerance

 \circ FGMRES with a 10⁻⁵ tolerance

- \circ FGMRES with a 10⁻⁵ tolerance
- o better convergence with a coarse grid correction

- interoperability of MUMPS with other libraries
- runtime tuning
- composable solvers/preconditioners

- $\circ~$ interoperability of MUMPS with other libraries
- runtime tuning
- composable solvers/preconditioners
- whish list (the one from MUD 2017 is complete!)

- interoperability of MUMPS with other libraries
- runtime tuning
- composable solvers/preconditioners
- whish list (the one from MUD 2017 is complete!)
 - ParMETIS/PT-SCOTCH on a subcommunicator

- $\circ~$ interoperability of MUMPS with other libraries
- runtime tuning
- composable solvers/preconditioners
- whish list (the one from MUD 2017 is complete!)
 - ParMETIS/PT-SCOTCH on a subcommunicator
 - easier handling of mixed types

- interoperability of MUMPS with other libraries
- runtime tuning
- composable solvers/preconditioners
- whish list (the one from MUD 2017 is complete!)
 - ParMETIS/PT-SCOTCH on a subcommunicator
 - easier handling of mixed types

Thank you!