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MATRICES IN PETSC

◦ about 100 different types

◦ not all may be (inexactly) “factored”
• MatShell (matrix-free)
• MatKAIJ (Kronecker product)

◦ but many can
• MatAIJ (compressed sparse row)
• MatBAIJ (block CSR)
• MatSBAIJ (symmetric BCSR)
• MatNest (nested submatrices)

◦ runtime composability (different types and solvers)
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FEATURES SINCE MUD 2017 IN PETSC INTERFACE

◦ version 5.1.1 to 5.6.0

◦ support for BLR via -mat_mumps_icntl_35
◦ transpose solve and sparse distributed block of RHS
◦ -mat_mumps_use_omp_threads to convert
processes into threads

◦ better performance for block matrices via ICNTL(15)
◦ automatic handling of MatSBAIJ and MatNest
◦ different PETSc and MUMPS precision (WIP)
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COMPLEXITY STUDY, CASE #1

◦ 3D linear elasticity, piecewise linear FE
◦ sequential, double-precision, exact LDLT factorization
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→ fighting an uphill battle 4



PERFORMANCE STUDY FOR THE 5M UNKNOWNS
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◦ 92% of the time (average) in numerical factorization

◦ FGMRES with a 10−5 tolerance, 15 iterations
◦ still not quite ideal, 20% efficiency
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DOMAIN DECOMPOSITION PRECONDITIONING

Ω

◦ global linear system Ax = b ∈ Rn

◦ 2-way surjection of J1;nK⇝ restriction operators

M−1
ASM =

N=2∑
i=1

RTi (RiARTi )−1Ri

→ not so easy, M−1
ASM doesn’t scale (numerically) as N → +∞
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HPDDM

◦ https://github.com/hpddm/hpddm
◦ spectral coarse correction M−1

additive = ZA−1
C ZT +M−1

ASM

with AC = ZTAZ

◦ three instances of MUMPS in a typical preconditioner
• local eigensolver
• local subdomain solver (RiARTi )−1

• distributed coarse operator solver
◦ runtime flexibility

• -pc_hpddm_levels_1_sub_mat_mumps_…
• -pc_hpddm_coarse_mat_mumps_…
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5M UNKNOWNS ON 256 PROCESSES
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◦ breaking the complexity of the exact factorization
◦ low-precision subdomain/coarse solvers
◦ disclaimer: difficult to beat AMG (when it converges)
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COMPLEXITY STUDY, CASE #2

◦ 3D Stokes equation, lowest-order Taylor–Hood FE
◦ sequential, double-precision, exact LDLT factorization
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→ variable block size 9



PERFORMANCE STUDY FOR THE 3M UNKNOWNS
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◦ costly symbolic factorization – no ICNTL(15)=1

◦ FGMRES with a 10−5 tolerance
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3M UNKNOWNS ON 256 PROCESSES
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◦ Schur complement: inner-outer iterations, ICNTL(15)=-3
◦ -fieldsplit_0_

sub_pc_precision single

11



3M UNKNOWNS ON 256 PROCESSES

dm
um
ps

w/
BL
R

AS
M

10

50

100

200

(491)

Ti
m
e
(s
ec
on

ds
)

Setup
Solve

◦ ASM converges (albeit rather slowly)

◦ Schur complement: inner-outer iterations, ICNTL(15)=-3
◦ -fieldsplit_0_

sub_pc_precision single

11



3M UNKNOWNS ON 256 PROCESSES

dm
um
ps

w/
BL
R

AS
M

fie
lds
pli
t

5

20

40
(491)

Ti
m
e
(s
ec
on

ds
)

Setup
Solve

◦ ASM converges (albeit rather slowly)
◦ Schur complement: inner-outer iterations, ICNTL(15)=-3
◦ -fieldsplit_0_

sub_pc_precision single

11



3M UNKNOWNS ON 256 PROCESSES

dm
um
ps

w/
BL
R

AS
M

fie
lds
pli
t

w/
sin
gle
-ε

5

20

40
(491)

Ti
m
e
(s
ec
on

ds
)

Setup
Solve

◦ ASM converges (albeit rather slowly)
◦ Schur complement: inner-outer iterations, ICNTL(15)=-3
◦ -fieldsplit_0_sub_pc_precision single 11



COMPLEXITY STUDY, CASE #3

◦ 3D Maxwell equation, order-two Nédélec FE
◦ sequential, double-precision, exact LDLT factorization
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PERFORMANCE STUDY FOR THE 2M UNKNOWNS
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◦ costly symbolic factorization – no ICNTL(15)=1

◦ FGMRES with a 10−5 tolerance
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FINAL WORDS

◦ interoperability of MUMPS with other libraries
◦ runtime tuning
◦ composable solvers/preconditioners

◦ whish list (the one from MUD 2017 is complete!)

• ParMETIS/PT-SCOTCH on a subcommunicator
• easier handling of mixed types

Thank you!

15



FINAL WORDS

◦ interoperability of MUMPS with other libraries
◦ runtime tuning
◦ composable solvers/preconditioners
◦ whish list (the one from MUD 2017 is complete!)

• ParMETIS/PT-SCOTCH on a subcommunicator
• easier handling of mixed types

Thank you!

15



FINAL WORDS

◦ interoperability of MUMPS with other libraries
◦ runtime tuning
◦ composable solvers/preconditioners
◦ whish list (the one from MUD 2017 is complete!)

• ParMETIS/PT-SCOTCH on a subcommunicator

• easier handling of mixed types

Thank you!

15



FINAL WORDS

◦ interoperability of MUMPS with other libraries
◦ runtime tuning
◦ composable solvers/preconditioners
◦ whish list (the one from MUD 2017 is complete!)

• ParMETIS/PT-SCOTCH on a subcommunicator
• easier handling of mixed types

Thank you!

15



FINAL WORDS

◦ interoperability of MUMPS with other libraries
◦ runtime tuning
◦ composable solvers/preconditioners
◦ whish list (the one from MUD 2017 is complete!)

• ParMETIS/PT-SCOTCH on a subcommunicator
• easier handling of mixed types

Thank you!

15


