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Illustration of seismic survey for oil exploration - seabed acquisition with dense node deployments

• Shooting vessel covers top of geological targeted area while triggering pressure sources at regular intervals.
Acoustic/elastic waves propagate inside the medium, interact with heterogeneities before being recorded
over time by receivers (here, a grid of autonomous nodes deployed on the seabed). Wave recordings
provide indirect measurements of subsurface properties. Seismic imaging aims at drawing some inferences
on the subsurface from these measurements.
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General definition of Full Waveform Inversion (FWI)
(Tarantola, 1984; Pratt et al., 1998; Virieux and Operto, 2009)

• FWI: A nonlinear and ill-posed inverse problem aiming at converting waves into mechanical
properties governing their propagation.

• Optimization problem: Minimize a distance between recorded data (wave measurements) and
numerically-simulated data.

• Forward problem: Numerical simulation of wave propagation. Solve the wave equation (a linear
PDE) in the framework of linear elasticity.

• Optimization variables: Spatially-varying parameters contained in the PDE coefficients.

• The forward problem for multiple RHS is the most computationally demanding task. MUMPS
gets in the game at this stage.
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Seismic wave modeling for seismic imaging: time-domain versus frequency-domain approaches
(Virieux et al., 2009)

• An initial-value evolution problem

M
∂2w(x, t)

∂t2
+ C

∂w(x, t)

∂t
+ Kw(x, t) = b(x, t)

State space U :=
{
w ∈

[
H1(Ω× (0, T ))

]3
: w(·, 0) = 0; ẇ(·, 0) = 0

}
, (1)

where Ω is the spatial computational domain containing the object domain (target to be imaged).

1. Matrix-free explicit time-marching schemes.
2. Cost scales to the number of right-hand sides ( [reciprocal] sources).
3. Attenuation in D generates computational ovearheads (factor 2 to 3).

• Forward engine of Reverse Time Migration (RTM) can be readily used for FWI. Convince the
industry it is the right approach to take.

M: mass matrix, D: damping matrix, K: stiffness matrix, w(x, t): wavefield, b(x, t): source term.
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Seismic wave modeling for seismic imaging: time-domain versus frequency-domain approaches
(Virieux et al., 2009)

• A boundary-value problem (Generalized Helmholtz problem).(
−ω2M + iωC + K

)
Wω(x) = Bω(x)

AW = B.

State space U :=
{
w ∈

[
H1(Ω)

]3
: w(∂Ωz1) = 0;w(∂Ωx,y,z2) = PML

}
(2)

1. Large and sparse linear system / frequency with multiple right-hand sides.
2. Block processing of right-hand sides.
3. Implementation of attenuation is free.

• Two families of linear algebra approaches

1. Direct methods for sparse matrices (Duff et al., 1986).
2. Preconditioned iterative methods (Saad, 2003). When domain-decomposition preconditioner, hybrid

direct-iterative methods (Tournier et al., 2022).
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The curse of dimensionality in exploration geophysics

• Physics: acoustic approximation (no shear) - Scalar Helmholtz equation:
(

ω2

c2(x)
I + ∆

)
w = b.

• Frequency bandwidth: 2 Hz - 100 Hz for a minimum P wavespeed of 1.5 km/s

• A representative physical domain: 23.5 km× 30 km× 8 km

• Discretization rule for FWI: 4 grid points / min. wavelength.
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• Key functions of MUMPS: [1] BLR MUMPS with mixed-precision arithmetic, [2] efficient processing of
multiple RHSs, [3] efficient multithreading (mitigate number of MPI process to minimize memory
overheads). 5/41



Discretizing A with adaptive, compact and accurate finite-difference stencil:
27-point mixed-grid stencil (Operto et al., 2007; Brossier et al., 2010; Operto et al., 2014)

• Mass and stiffness operators

(
−ω2M + iωC + K

)
Wω(x) = Bω(x)→ AW = B.

• Compound stiffness matrix

K = ws1K1 +
ws2

3

3∑
i=1

K2,i +
ws3

4

4∑
i=1

K3,i,

where
∑3

i=1 wsi = 1.

• Consistent mass

(Mw)0 = ω2

(
wm1w0 + wm2

6∑
i=1

[w
κ

]
1,i

+ wm3

12∑
i=1

[w
κ

]
2,i

+ wm4

8∑
i=1

[w
κ

]
3,i

)
,

where wm1 + 6wm2 + 12wm3 + 8wm4 = 1.

• Ordering

Nested dissection based permutation (ICNTL(7)=1).
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FWI: Mathematical formulation

• A wave-equation constrained nonlinear optimization problem

min
ws,f ,m

Nf∑
f=1

Ns∑
s=1

‖
obs. equation︷ ︸︸ ︷
Pws,f − d∗s,f ‖

2
2 subject to

wave equation︷ ︸︸ ︷
Af (m)ws,f − b∗s,f = 0,

multi RHS︷ ︸︸ ︷
s = 1, ..., Ns,

multi freq.︷ ︸︸ ︷
f = 1, ..., Nf . (3)

• Full-space approach: Lagrange multiplier method (Akçelik, 2002)

min
ws,f ,m

max
vs,f

Nf∑
f=1

Ns∑
s=1

‖Pws,f − d∗s,f‖
2
2 +

Nf∑
f=1

Ns∑
s=1

〈
vs,f ,A(m)fws,f − b∗s,f

〉
U
, (4)

• Reduced-space approach: Variable-projection approach (Golub and Pereyra, 2003) → data-fitting problem

min
m

φFWI(m) =

Nf∑
f=1

Ns∑
s=1

‖Sf (m)b∗s,f − d∗s,f‖
2
2, (5)

Sf (m) = PA−1
f (m): forward modeling operator; ds,f (m) = Sf (m)b∗s,f : simulated data.
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FWI: Local-optimization approaches (gradient based methods)

• Linearization around mk (Newton-type method)

m(k+1) = m(k) + αδm(k). (6)

where

∂2φFWI(m(k))

∂m2
δm(k) = −

∂φFWI(m(k))

∂m

φFWI(m) =

Nf∑
f=1

Ns∑
s=1

‖Sf (m)b∗s,f − d∗s,f‖
2
2 =

Nf∑
f=1

Ns∑
s=1

‖δd∗s,f (m)‖22.

• Gradient of misfit function: diffraction-stack formulation

∇miφ
FWI(m) =

Nf∑
f=1

Ns∑
s=1

(
Sf (m)f

(i)
s,f

)T (
δd∗s,f (m)

)
with f

(i)
s,f =

∂Af (m)

∂mi
ws,f (m). (7)

• Gradient of misfit function: Computationally-efficient adjoint-state formulation

∇miφ
FWI(m) =

Nf∑
f=1

Ns∑
s=1

(
f
(i)
s,f

)T (
ST
f (m)δd∗s,f (m)

)
with f

(i)
s,f =

∂Af (m)

∂mi
ws,f (m). (8)
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Computing the gradient with the adjoint-state method by time reversal

• Conclusion: Two wave simulations / (reciprocal) source & FWI iteration using A and At as
matrices, respectively.
• First set of RHSs are (reciprocal) point sources b∗s,f on the sea bed (nodes); second set of RHS

are distributed-source below sea surface at (reciprocal) receiver positions δd∗s,f (m).
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The first real-data case study of 3D frequency-domain FWI based on direct solver
(Operto et al., 2015; Amestoy et al., 2016; Operto and Miniussi, 2018; Amestoy et al., 2021)
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Geology, acquisition and data anatomy: Geodynamical context

• Target: Elongated horst block trending N-NE in the North West Shelf of Australia with
intra-horst en-echelon faults separating field into fault blocks.

Courtesy M. Van Ross, Chevron
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Geology, acquisition and data anatomy:2015/2016 Gorgon OBN survey

• Full survey:
3100 4C OBns; 735 source lines; 697,345 shot
points (980 km2); 240 km2 full fold area.

• Available dataset:
650 OBNs (OBN spacing: 375 m);
Source carpet: 400,258 shots. Area: ∼ 705 km2

• Target 1 for FWI:
Full shot carpet involved in FWI.
23.5 km(dip)× 30 km(cross)× 8 km(depth);
Area: ∼ 705 km2.
Maximum frequency for FWI: 8.55 Hz.

• Target 2 for FWI:
Shot carpet above OBN layout.
23.5 km(dip)× 11 km(cross)× 8 km(depth);
Area: ∼ 258.5 km2.
Maximum frequency for FWI: 13.2 Hz.

• Recording length: 6 s.
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FWI experimental setup

• Hardware: Jean-Zay supercomputer of IDRIS, France, 1528 CPU nodes, 192 Gb / node.

• 2 processors Intel Cascade Lake 6248 (20 cores at 2,5 GHz), 40 cores /node.

• Job design: 1 MPI process / node with 40 threads → Mitigate memory overhead.

• All nodes & shots involved at each FWI iteration.

• Frequency management: Frequency patches with matched grid interval.
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Imaging the Gorgon horst (Target 1): Starting model
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Imaging the Gorgon horst (Target 1): FWI model - f = 8.5 Hz (70 Mdof)
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Imaging the Gorgon horst (Target 1): FWI model - f = 8.5 Hz (70 Mdof)
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Imaging the Gorgon horst (Target 2): FWI model (Path 1) - f = 13.20 Hz (80 Mdof)
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QC of FWI results: Data fit - Direct comparison between recorded and simulated data (FWI)
Bandwidth: 1.7-2-11-13 Hz
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Recorded data Interleaved FWI
• QC of FWI results: time-domain simulated

data with frequency-domain forward
engine.

• Account for attenuation accurately.

• 80 LU factorizations & solution steps on
the finest grid (around 30 hours elapsed
time).

• Solutions needed only at receiver surface
(shot carpet). Speedup of backward step?
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MUMPS performances

In the next slides,

• Comparison of FR, BLR, MP-BLR for targets 1 and 2 (ICNTL(35)=2; ICNTL(36)=ICNTL(37)=1.
CNTL(7)=10−5.

• Comparison when source sparsity is used or not for targets 1 and 2. ICNTL(20)=2/3.

• Comparison of solution step when sources are processed sequentially or in parallel. ICNTL(27)=1/217.

Fixed parameters in MUMPS:

• Nested dissection

• Pivoting: KEEP(268)=-2

• Multithreading: KEEP(401)=1

• Scheduler: KEEP(370)=KEEP(371)=1
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Target 1 (23.5 km× 30 km× 8km) - BLR with mixed-precision arithmetic
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Target 2 (23.5 km× 11 km× 8km) - BLR with mixed-precision arithmetic
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Processing multi-RHS: Parallel BLAS (ICNTL(27)) & Exploiting sparsity (ICNTL(20)=2/3)

• Target 1: 23.5 km× 30 km× 8km;
Frequency: 7.1 Hz; #dofs: 46 millions. 54
MPI process.

• Target 2: 23.5 km× 11 km× 8km;
Frequency: 10.02 Hz; #dofs: 44.7 millions. 54
MPI process.

Computation done with MPBLR.
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First-order conclusions

• Costs of LU and solution phases are of the same order of magnitude (consistent with theoretical
complexities of LU). However, the cost of LU remains higher due to the small number of RHSs for
this sparse node survey.

• The memory used during the factorization step and the solution step is of the same order of
magnitude. INFOG(19) vs INFOG(31).

• BLR and MP-BLR lead to a memory reduction during LU of the order of 20% and 40%,
respectively.

• BLR and MP-BLR lead to a elapsed-time reduction during LU of the order of 30-55% and
40-60%, respectively. These speed-ups increases with the size of the problem.

• Processing of mult RHS is speed up significantly with BLAS.

• Exploiting source sparsity further decreases the computational time by a factor of 18% when the
sources cover a significant part of the surface. Better speed up is obtained for large computational
domain?
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Additional comment: Resorting distributed solutions

• It is beneficial for our FWI application to resort the distributed multi-rhs solution returned by
MUMPS such the FWI gradient is computed with en embarrassing parallelism over sources.
• We recently face some problems with the collective communication MPI_ALLTOALLV due the

size of some buffers associated with the largest domain.
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Hybrid direct/iterative solver based domain-decomposition preconditioner
for large-scale problems Tournier et al. (2022)

• Tackling large computational domains (several hundreds of millions of parameters to few billions
of parameters) with sparse acquisitions (reasonable number of right-hand sides, few hundreds to
few thousands) direct us toward more scalable and less memory demanding solvers such as
domain-decomposition based hybrid direct/iterative solver.

• The Optimized Restricted Additive Schwarz (ORAS) preconditioner was assessed for large scale
seismic modeling by Tournier et al. (2022) using both the wavelength-adaptive finite-difference
method and P3 finite-element method on unstructured tetrahedral mesh.

• The global preconditioned system is solved with the iterative GMRES solver (Saad, 1986) while
the preconditioner is built by solving local problems with MUMPS with absorbing boundary
conditions (Robin conditions or PML) between subdomains.
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Hybrid direct/iterative solver based domain-decomposition preconditioner:
Principles

• Helmholtz system
Aw = b. (9)

• Right-preconditioned system

AM−1y = b where w = M−1y andM−1
ORAS =

N∑
j=1

RT
j DjB

−1
j Rj . (10)

• Partitioning of Ω into N overlapping subdomains {Ωj}Nj=1.

• Boolean matrix Rj ∈ Rnj×n where n is the total number of degrees of freedom and nj is the number of
degrees of freedom in Ωj .

• Partition of unity having matrix form Dj ∈ Rnj×nj

• Rj and Dj are built such that
∑N

j=1R
T
j DjRj = I.

• Bj is the local matrix on Ωj and Robin or impedance boundary conditions are assumed on ∂Ωj \ ∂Ω.
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Hybrid direct/iterative solver based domain-decomposition preconditioner for large-scale prob-
lems

• Objectives from the practitioner perspective: Tune the solver with representative large-scale
benchmarks to find the best compromise between accuracy and efficiency.
• Discretization: 4 grid points per minimum wavelength (finite differences) and h = λlocal/4 where
h denotes the average element edges where λlocal is the local wavelength (h-adaptivity in finute
elements. This is optimal for the helf wavelength resolution of FWI.
• Find the polynomial order such that accuracy of FE and FD roughly equivalent: P3 elements.
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3D SEG/EAGE overthrust (Aminzadeh et al., 1997) & GO_3D_OBS benchmarks (Górszczyk
and Operto, 2021)
Unstructured tetrahedral meshing with Mmg (Dapogny et al., 2014) re-meshing software
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Hybrid direct/iterative solver based on domain-decomposition preconditioner
for large-scale problems

• Stopping criterion of GMRES iteration

εGMRES =
‖Aw − b‖22
‖b‖22

= 10−4.

• Arithmetic precision (single versus double complex precision)

• Local solver (FR/BLR MUMPS, INTEL MKM Pardiso). εBLR = 10−3.

• Orthogonalization of the Krylov basis: Classical Gram-Schmidt (CGS) and modified
Gram-Schmidt (MGS) algorithms (Saad, 2003).

• Multi-RHS processing: Pseudo-block Krylov method, a block Krylov method and block Krylov
with recycling by processing the 130 RHSs in group of 20 (Parks et al., 2006; Jolivet and
Tournier, 2016).
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BLR-MUMPS as a local solver for hybrid method

Table 1: Solver: Intel MKL PARDISO versus MUMPSFR/BLR. arith: single versus double precision. ortho:
CGS versus MGS orthogonalization. #it: Number of iterations. Tf (s): Elapsed time for local LU factorizations.
Ts(s): Elapsed time for all GMRES iterations for one RHS and 130 RHSs processed with a pseudo-block Krylov
method. Ttot(s) = Tf (s) + Ts(s): Total elapsed time for the simulation.

1 RHS 130 RHS
Solver arith. ortho. Tf (s) #it Ts(s) Ttot(s) #it Ts(s) Ttot(s)

PARDISO double MGS 12.1 48 16.5 28.6 50 724.4 736.5
PARDISO double CGS 12.1 48 16.7 28.8 50 575.5 587.6
MUMPSFR double MGS 11.3 48 17.2 28.5 50 654.9 666.2
MUMPSFR double CGS 11.3 48 16.9 28.2 50 482.2 493.5
PARDISO single MGS 6.5 48 9.9 16.4 50 403.6 410.1
PARDISO single CGS 6.5 48 9.6 16.1 50 334.8 341.3
MUMPSFR single MGS 6.2 48 8.9 15.1 50 345.8 352.0
MUMPSFR single CGS 6.2 48 8.9 15.1 50 275.3 281.5
MUMPSBLR single CGS 4.9 53 7.2 12.1 55 256.8 261.7
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Accuracy of FEFD versus FDFD
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Figure 1: 3D EAGE/SEG overthrust model. Comparison between the wavefields computed with the CBS,
FEFD and FDFD methods. The rows shown from top to bottom two depth slices at 500 m depth (across the
source) and 2 km depth, and two vertical sections at x=2.5 km (across the source) and 15 km. From left to
right, the columns show the CBS wavefield, the FEFD wavefield, the differences between the two, the FDFD
wavefield and its differences with the CBS wavefield. 31/41



Cost of FDFD versus FEFD

Table 2: Results of the four benchmarks obtained with the FEFD and FDFD methods. #d: Number of dofs
(including PMLs). #cores: Number of cores. #it: Number of GMRES iterations (for FEFD, average number
of inner iterations to solve the coarse problem in parentheses). Tf (s): Elapsed time for local LU factorizations.
Ts(s): Elapsed time for all GMRES iterations. Ttot(s) = Tf (s) + Ts(s): Total elapsed time for the simulation.
Thc(s) = #cores× Ttot: Scalar time. Err: Solution error.

FEFD method
Benchmark #d(M) #cores #it Tf (s) Ts(s) Ttot(s) Thc(h) Err

Homogeneous 526.2 2400 31(13) 64.1 73.0 137.1 91.4 0.0891
Gradient 147.1 2400 5(14) 12.4 6.1 18.5 12.3 0.0485

Gradient(c) 526.2 2400 8(16) 59.8 22.3 82.1 54.7 0.0119
Overthrust 157.1 2400 6(17) 13.5 6.7 20.2 13.5 0.2690

Overthrust(c) 516.5 2400 6(20) 57.6 19.5 77.1 51.4 0.2351
GO_3D_OBS 597.7 2400 10(14) 62.3 26.1 88.4 58.9 0.2807

FDFD method
Benchmark #d(M) #cores #it Tf (s) Ts(s) Ttot(s) Thc(h) Err

Homogeneous 19.6 396 41 5.4 5.7 11.1 1.2 0.0317
Gradient 23.5 396 42 5.7 6.4 12.1 1.3 0.0114
Overthrust 19.1 363 33 5.0 4.5 9.5 0.96 0.1188

GO_3D_OBS 67.5 660 45 10.8 11.5 22.3 4.1 0.2096 32/41



Weak scaling
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Conclusion & perspectives

• Representation industrial FWI case studies can be tackled with sparse direct solvers like MUMPS.
A statement that was considered as utopian two decades ago. I did not know it was impossible so
MUMPS did it.

• Limits of MUMPS were not reached in terms of problem size. Projet MUMPS4FWI supported by
Adastra HPC challenge (CINES) will contribute to reach these limits in the next six months.

• Future works: update our FFWI code with

1. Interface ORAS-based hybrid direct/iterative solver in FFWI.
2. Finite-element schemes (spectral element method with consistent mass and Chebychev polynomials)

(Seriani and Oliveira, 2008). Elemental assemblage of the matrix.
3. Elastic physics (vertorial wave equation).
4. New FWI formulation extending its linear regime (cycle skipping pathology).
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Forward problem: Complexity analysis of time-domain versus frequency-domain approaches

For a n3 computational grid and n2 sources,

• Time complexity of FD and TD approaches scale to O(n6) (for 1 frequency in the FD case).
• Frequency-domain FWI should be performed with a limited number of frequencies.
• Memory complexity: TD approach scales to O(n5) for storage of n2 wavefield snapshots (more

memory demanding thn the storage of the LU factors O(n4))
→ Random subsets of sources are processed at each iteration.
• For direct methods, few batches of the full shot carpet are processed sequentially thanks to
highly-efficient solution step, while sources of a batch are processed in parallel with block
methods.
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Wavelength-adaptive 27-point stencil: Making accuracy uniform (Aghamiry et al., 2022)

Dispersion minimized for G=4 Dispersion minimized for G=4,6,8,10 Dispersion with adaptive weights

Weight functions W(G)Dispersion for different G

Dispersion minimized for G=4

Dispersion minimized for G=4,6,8,10

Dispersion minimized with adaptive weights
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Imaging the Gorgon horst (Target 2): FWI model (Path 2) - f = 8.79 Hz (26 Mdof)
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Imaging the Gorgon horst (Target 2): FWI model (Path 2) - f = 13.20 Hz (80 Mdof)
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QC of FWI results: Direct comparison between recorded and simulated data (tomography)
Bandwidth: 1.7-2-11-13 Hz
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Computational cost and comparison with FDTD modeling

• FDTD: O(∆t2,∆x8) accuracy.

• FDTD: Two level parallelism (source distribution +
domain decomposition)

• FDTD: 2 sources processed on a node with 20 threads
(domains) per source.

• FDTD: modeling without attenuation. Multiply cost by a
factor of 2 to 3 for attenuation (Plessix, 2017).

• FDFD: modeling for 1 frequency. Multiply cost by number
of jointly-processed frequencies.

Target f(Hz) #dof #sources #n (TD) #n (FD)
1 8.55 80 650 325 100
1 8.55 80 3000 1500 100
2 13 78.4 650 325 120

Table 3: #sources: number of reciprocal sources (OBN); #n:
number of computer nodes.
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