

Augmented Partial Factorization: efficient computation of the generalized scattering matrix

Chia Wei (Wade) Hsu

Ming Hsieh Department of Electrical and Computer Engineering University of Southern California

University of Southern California

Optics in Complex Systems Group @ USC

Downtown Los Angeles

University of Southern California

Our group

Optics in Complex Systems Group @ USC Optical systems that couple many degrees of freedom (spatial/angular, temporal/spectral, etc)

Metasurface & inverse design

Multi-channel optical systems

Disordered Media

Metasurfaces

Engelberg et al, Nanophotonics (2020)

Photonic Circuits

N. Harris et al, Nature Photonics (2017)

Multi-mode Fibers

The "scattering matrix"

 $M' \times M$ scattering matrix $S(\omega)$

In two-sided systems, $S = \begin{bmatrix} r & t' \\ t & r' \end{bmatrix}$, where r = reflection matrix, t = transmission matrix.

 $S(\omega)$ fully encapsulates the multi-channel response.

But computing $S(\omega)$ is a major challenge.

1) Redundancy in field computation

Compute full field profile 20~40 pixels per λ in the volume \Rightarrow 100,000 variables Only compute the outputs of interest

2) Repetitions over inputs

7

Outline

- 1. Augmented partial factorization (APF) method
- 2. Applications of APF:
 - a) Two-photon coherent backscattering
 - b) Vectorial open channel in 3D
 - c) Noninvasive imaging deep inside scattering media
 - d) Inverse design of metasurfaces

Frequency-domain response problem

Sparse system of linear equations: Ax = b

Repeat for each block of inputs

Formulate the generalized scattering matrix

What we want, for any linear-response problem 10

Schur complement

Want an efficient way to evaluate $\mathbf{S} = \mathbf{C} \mathbf{A}^{-1} \mathbf{B} - \mathbf{D}$ projection of \mathbf{A}^{-1} onto \mathbf{C} and \mathbf{B} Recall a simple problem:

Recall a simple problem:

$$ca^{-1}(a x_1 + b x_2 = y_1) \cdots \cdots (1)$$

 $c x_1 + d x_2 = y_2 \cdots \cdots (2)$

Eliminate x_1 . Then solve for x_2

$$cx_{1} + ca^{-1}bx_{2} = ca^{-1}y_{1} \cdots ca^{-1}(1)$$

$$-) cx_{1} + dx_{2} = y_{2} \cdots (2)$$

$$(ca^{-1}b - d)x_{2} = ca^{-1}y_{1} - y_{2} \cdots ca^{-1}(1) - (2)$$
Schur complement

Same procedure when we have matrices instead of scalars Gaussian elimination \Leftrightarrow Eliminate unknowns by projecting them away Here, want project the A^{-1} associated with $x_1 \& y_1$ onto $x_2 \& y_2$ \Rightarrow Augment the system, then perform a partial solution

Augmented partial factorization (APF)

Want an efficient way to evaluate $S = C A^{-1} B - D$

Step 1:

Build an *augmented matrix*

$$\mathbf{K} \equiv \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} =$$

B = input source profiles

C = output projection profiles

Step 2: Use MUMPS to compute its Schur complement (through a partial LU factorization)

$$\mathbf{K} \equiv \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{E} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{F} \\ \mathbf{0} & \mathbf{H} \end{bmatrix}$$
Schur complement

Step 3: Return $-H = C A^{-1} B - D = S$

Solves for all inputs using a single factorization!

Augmented partial factorization (APF) advantages

- ✓ Full-wave solution; no approximation beyond discretization
- ✓ Does not compute unnecessary solution, *i.e.* $X = A^{-1}B$
- A single partial factorization solves *M* scattering problems with different inputs
- \checkmark Can use MUMPS \Rightarrow Optimized & scalable for parallel computing
- ✓ Does not need L and U factors [ICNTL(31)=1] \Rightarrow saves memory
- ✓ Uses all sparsity properties of A, B, C
- ✓ Applicable to **any linear system**:
 - ✓ Any structure $\varepsilon_r(\omega, \mathbf{r})$ including substrate *etc*; any dispersion
 - ✓ Any input sources & any output projections
 - ✓ Any linear PDE & any discretization scheme (finite difference, finite element, boundary element, ...)
 - \checkmark Any linear problem of the form C A^{-1} B

(up to a factor of 4)

Benchmarks on large-scale multi-channel systems Implemented APF with finite difference on Yee grid

2D TM waves

Uses **MUMPS** for partial factorization

On Intel Xeon Gold 6130 (using 1 core)

Compare: APF, Direct^[1] & iterative^[2] FDFD, RCWA^[3], RGF^[4]:

[1] MaxwellFDFD: https://github.com/wsshin/maxwellfdfd

- [2] FD3D: https://github.com/wsshin/fd3d
- [3] S4: https://github.com/victorliu/S4

[4] RGF: https://github.com/chiaweihsu/RGF

H-C Lin, Z Wang, CW Hsu, Nature Computational Science 2, 815 (2022)

Computing time & memory usage scaling in 2D

Numerical round-off error

(double-precision arithmetic) (no iterative refinement)

Only relevant error is from discretization

17

Benchmark 2: mm-scale TiO₂ metalens

(resolution: $\Delta x = \lambda/40$; $\lambda = 532$ nm)

H-C Lin, Z Wang, CW Hsu, Nature Computational Science 2, 815 (2022)

Full-wave simulation @ 3,761 incident angles Total computing time ~ 1 minute using one core on a laptop

MESTI software

<u>Maxwell's Equations Solver with Thousands of Inputs</u>

https://github.com/complexphoton/MESTI.m

Uses sequential MUMPS (yes multithreading, no MPI)

- Open-source
- TE & TM polarizations in 2D
- Any $\varepsilon(x, y)$ including substrates *etc*
- Any dispersion
- Any list of input source profiles
- Any list of output projection profiles (or full solution)
- All common boundary conditions
- PML with real & imaginary coordinate stretching
- Utility functions for building inputs/outputs
- Documentation
- Examples

3D vectorial version in Julia using parallel MUMPS: coming soon!

One caveat

Want to evaluate $S = C A^{-1} B - D$ Step 1:

Build an *augmented matrix*

$$\mathbf{K} \equiv \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} =$$

B = input source profiles

C = output projection profiles

Step 2: Compute its Schur complement

 $\mathbf{K} \equiv \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{E} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{F} \\ \mathbf{0} & \mathbf{H} \end{bmatrix}$ Schur complement Step 3: Return $-\mathbf{H} = \mathbf{C} \mathbf{A}^{-1} \mathbf{B} - \mathbf{D} = \mathbf{S}$

What if number of columns in B ≠ number of rows in C? ⇒ Pad zero-columns to B or zero-rows to C Very inefficient when the two numbers are very different (eg: gradient) Wish list for MUMPS: skip Schur complement evaluation associated with zero rows/columns

Schur complement without LU?

Want to evaluate $S = C A^{-1} B - D$ Step 1:

Build an *augmented matrix*

$$\mathbf{K} \equiv \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} =$$

B = input source profiles

C = output projection profiles

Step 2: Compute its Schur complement

$$\mathbf{K} \equiv \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{L} & \mathbf{0} \\ \mathbf{E} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{F} \\ \mathbf{0} & \mathbf{H} \end{bmatrix}$$
Schur complement
Step 3: Return $-\mathbf{H} = \mathbf{C} \mathbf{A}^{-1} \mathbf{B} - \mathbf{D} = \mathbf{S}$

We only need the Schur complement; not the LU factors \Rightarrow Potential room for further acceleration?

Outline

1. Augmented partial factorization (APF) method

- 2. Applications of APF (all done with MESTI):
 - a) Two-photon coherent backscattering with Yaron Bromberg @ Hebrew University & Arthur Goetschy @ Institut Langevin
 - b) Vectorial open channel in 3D
 - c) Noninvasive imaging deep inside scattering media
 - d) Inverse design of metasurfaces

Coherent backscattering (CBS) of classical light

Disorder averaged backscattered intensity

Akkermans, Wolf, Maynard, PRL (1986)

Does non-classical light exhibit CBS? How does that differ from classical CBS?

Coherent backscattering of non-classical light

M. Safadi, O. Lib, H.-C. Lin, CWH, A. Goetschy, and Y. Bromberg, *Nature Physics* (2023).

Theory of two-photon CBS

Entangled photon-pair input: $|\psi\rangle \propto \sum_{q'} \hat{c}^{\dagger}_{q'} \hat{c}^{\dagger}_{-q'} |0\rangle$

 \hat{c}_q^{\dagger} : creation operator for input mode

Reflected output: $\hat{d}_q = \sum_{q'} r_{qq'} \hat{c}_{q'}$

Coincidence rate $\propto \overline{\langle \psi |: \hat{n}_a \hat{n}_b : |\psi \rangle}$ $\hat{n}_q = \hat{d}_q^{\dagger} \hat{d}_q^{\dagger} = \text{disorder average}$

$$\propto \overline{\left|\left(r^{2}\right)_{q_{b},-q_{a}}\right|^{2}}$$

matrix square

(use reciprocity)

 r_{qq} : reflection matrix

Need:

- Full reflection matrix r for all of the many input/output angles.
- Average over thousands of disorder realizations.
- System width $W \gtrsim 60\ell_t$ to resolve the two-photon CBS cone.
- System thickness $L \gg \ell_t$ to be in diffusive regime of transport.
- Need to suppress single scattering in reflection ⇒ point seatterers
- Full-wave solution.

Very challenging for existing numerical methods... But not with APF.

Two-photon CBS in disordered media

Compute 4,000 reflection matrices from 2,000 realizations One realization takes 11 minutes using one core, using APF

M. Safadi, O. Lib, H.-C. Lin, CWH, A. Goetschy, and Y. Bromberg, *Nature Physics* (2023). ²⁷

Outline

- 1. Augmented partial factorization (APF) method
- 2. Applications of APF:
 - a) Two-photon coherent backscattering
 - b) Vectorial open channel in 3D
 - c) Noninvasive imaging deep inside scattering media
 - d) Inverse design of metasurfaces

Open channels through disorder

First predicted for scalar electron waves:

<u>D</u>orokhov, *Solid State Commum* (1984) <u>M</u>ello, <u>P</u>ereyra, <u>K</u>umar, *Ann Phys* (1988)

Closed channels

Open • Shaping the wavefront of electrons is hard. channels

Realized for scalar waves in 2D waveguides:

- FDTD simulation: Choi et al, PRB (2011)
- Acoustic exp: Gérardin et al, PRL (2014)
- Optical exp: Sarma et al, PRL (2016)
- Microwave exp: Horodynski et al, *Nature* (2022)

 $\mathbf{S} = \begin{bmatrix} \mathbf{r} & \mathbf{t'} \\ \mathbf{t} & \mathbf{r'} \end{bmatrix}$ for two-sided systems

Realization in 3D remains challenging:

- Experiments face incomplete channel control
 - Yu et al, *PRL* (2013): 7% ⇒ 65%
 - Popoff et al, *PRL* (2014): 5% ⇒ 18%
 - Bosch, PhD thesis (2020): 26% => 49%
- Simulations take unrealistic resources (but not with APF!)

Open channel for 3D vectorial EM waves

Eigenvalue distribution for 3D vectorial EM waves

Ensemble average over 500 realizations

Outline

- 1. Augmented partial factorization (APF) method
- 2. Applications of APF:
 - a) Two-photon coherent backscattering
 - b) Vectorial open channel in 3D
 - c) Noninvasive imaging deep inside scattering media
 - d) Inverse design of metasurfaces

Depth-vs-resolution trade-off for deep imaging

Lai & Leahy, MICC 23, 345 (2016)

Spatiotemporal gating ⇔ summing plane waves

Scattering matrix tomography (SMT)

Hyper-spectral reflection matrix measurement

Y. Zhang et al, arXiv:2306.08793

Imaging through brain tissue

Volumetric SMT imaging

TiO₂ nanoparticles (500-nm diameter) in PDMS Transport mean free path: 1 mm

Numerical experiment with full-wave simulations

TiO₂ nanoparticles (300 nm diameter) in tissue phantom ($\ell_s = 44 \ \mu m$, $\ell_t = 340 \ \mu m$)

Numerical experiment with full-wave simulations

TiO₂ nanoparticles (300 nm diameter) in tissue phantom ($\ell_s = 44 \ \mu m$, $\ell_t = 340 \ \mu m$)

Project reflected wave onto plane waves at different angles

 \Rightarrow One column of $R(\mathbf{k}_{out}, \mathbf{k}_{in}, \omega)$

Use MESTI to compute $R(\mathbf{k}_{out}, \mathbf{k}_{in}, \omega)$ (simulation time: 4 minutes per wavelength)

Compute $R(\mathbf{k}_{out}, \mathbf{k}_{in}, \omega)$ with

- 600 wavelengths within $\lambda \in [700, 1000]$ nm
- $NA_{out} = NA_{in} = 0.5$ (600~900 angles each)

SMT from full-wave simulations

Comparing methods with zoom-in Ground truth RCM SMT OCT OCM **ISAM** 75 False positives 25 у (µm) False negatives -25 -75 100 50 75 25 у (µm) -25 -75 250 200 *z* (µm)

Outline

- 1. Augmented partial factorization (APF) method
- 2. Applications of APF (all done with MESTI):
 - a) Two-photon coherent backscattering
 - b) Vectorial open channel in 3D
 - c) Noninvasive imaging deep inside scattering media
 - d) Inverse design of metasurfaces

Inverse design

System parameters $P = \{p_1, ..., p_K\}$

Efficient optimization requires the gradient $\overrightarrow{\nabla}_P f = \left\{ \frac{\partial f}{\partial p_1}, \dots, \frac{\partial f}{\partial p_K} \right\}$

Adjoint method:

1 input: 1 forward simulation + 1 adjoint simulation $\Rightarrow \overline{\nabla}_P f$ *M* inputs: *M* forward simulation + *M* adjoint simulation $\Rightarrow \overline{\nabla}_P f$

Gradient computation using APF

Figure of Merit (FoM): f[S(P), P] S --- scattering matrix

 $\mathbf{S} = \mathbf{C}\mathbf{A}^{-1}\mathbf{B} - \mathbf{D}$

P --- parameters to be optimized

 $CA^{-1}U_{\nu}$

Low-rank matrix $\partial \mathbf{A}/\partial p_k$

×

A

 $\mathbf{U}_{k}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{B}$

Gradient computation using APF

A single APF computation yields the multi-channel FoM and its gradient 46 S. Li, H.-C. Lin, CWH, arXiv:2306.09257

Redundancy in APF... and a partial remedy

Dependence on N_{sub}

Divide one large APF computation into N_{sub} sub-APF computations

$$\tilde{\mathbf{S}} = \begin{bmatrix} \mathbf{C}\mathbf{A}^{-1}\mathbf{B} & \mathbf{C}\mathbf{A}^{-1}\mathbf{U}_{(n)} \\ \mathbf{U}_{(n)}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{B} & \mathbf{U}_{(n)}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{U}_{(n)} \end{bmatrix}$$

Conventional adjoint method: $2M_{in}$ simulations (M_{in} forward, M_{in} adjoint)

Optimize a broad-angle metasurface beam splitter

(VCSEL: Vertical-Cavity Surface-Emitting Laser)

Figure of Merit (FoM):

$$f(\mathbf{T}, P) = \sum_{n=1}^{M_{\text{out}}} \sum_{m=1}^{M_{\text{in}}} \left| |T_{nm}(P)|^2 - T_{\text{target}, nm}^2 \right|^2$$

Transmission matrix:
$$\mathbf{T} = T_{nm} = T(\theta_{out}^n, \theta_{in}^m)$$

S. Li, H.-C. Lin, CWH, arXiv:2306.09257

Optimize a broad-angle metasurface beam splitter

- α -Si ridges sitting on a silica-substrate. Wavelength = 940 nm
- Parameters P = {edge positions}
- Angular range = 60° , 25 input angles, 51 output angles
- Optimized with the SLSQP algorithm in NLopt package
- Best result over 1000 randomly generated initial guesses

Before optimization: $W = 24 \ \mu m, N = 80 \ ridges$ After optimization:

S. Li, H.-C. Lin, CWH, arXiv:2306.09257

Summary

- 1. Augmented partial factorization (APF) method
 - Bypass unnecessary computation & Avoid repetition \Rightarrow Fast computation of C A⁻¹B
 - Enabled by the Schur complement feature of MUMPS
- 2. Applications of APF (all done with MESTI):
 - a) Two-photon coherent backscattering
 - b) Vectorial open channel in 3D
 - c) Noninvasive imaging deep inside scattering media
 - d) Inverse design of metasurfaces

Chan Zuckerberg **SONY** Initiative 😚

Augmented partial factorization (APF) solver:

Ho-Chun Lin

Two-photon coherent backscattering: *Hebrew Univ*: Mamoon Safadi, Ohad Lib, Yaron Bromberg *Institut Langevin*: Arthur Goetschy *USC*: Ho-Chun Lin

Vectorial open channel in 3D: Ho-Chun Lin

Imaging inside scattering media: Yiwen Zhang, Zeyu Wang, Minh Dinh

Metasurfaces inverse design:

Shiyu Li

Thank you, MUMPS developers!