Sparse factorization using low rank submatrices

Cleve Ashcraft LSTC cleve@lstc.com

2010 MUMPS User Group Meeting April 15-16, 2010 Toulouse, FRANCE

ftp.lstc.com:outgoing/cleve/MUMPS10_Ashcraft.pdf

LSTC

Livermore Software Technology Corporation Livermore, California 94550

- Founded by John Hallquist of LLNL, 1980's
- Public domain versions of DYNA and NIKE codes
- LS-DYNA : implicit/explicit, nonlinear finite element analysis code
- Multiphysics capabilities
 - -Fluid/structure interaction
 - Thermal analysis
 - Acoustics
 - Electromagnetics

Multifrontal Algorithm

- very large, sparse LDL^T and LDU factorizations
- tree structure organizes factor storage, solve and factor operations
- medium-to-large sparse linear systems located at each leaf node of the tree
- medium-sized dense linear systems located at each interior node of the tree
- dense matrix-matrix operations at each interior node
- sparse matrix-matrix adds between nodes

Multifrontal tree

Multifrontal tree – polar representation

Multifrontal Algorithm

- 40M equations, present frontier at LSTC
- serial, SMP, MPP, hybrid, GPU
- large problems, > 1M 10M dof, require out-of-core storage of factor entries, even on distributed memory systems
- IO cost largely hidden during the factorization
- IO cost dominant during the solves
- \bullet eigensolver \implies several right hand sides
- many applications, e.g., Newton's method, have a single right hand side

Low Rank Approximations

- hierarchical matrices, Hackbusch, Bebendorf, Leborne, others
- semi-separable matrices, Gu, others
- submatrices are numerically rank deficient
- method of choice for Boundary Elements (BEM)
- now applied to Finite Elements (FEM)

 $Multifrontal \ Algorithm + \ Low \ Rank \ Approximations$

- At each leaf node in the multifrontal tree use standard multifrontal
- At each interior node in the multifrontal tree low rank matrix-matrix multiplies and sums
- Between nodes low rank matrix sums
- Dramatic reduction in storage
- Dramatic reduction in operations
- Excellent approximation properties for finite element operators
- Our experience is with potential equations, elasticity with solids and shells

Outline

- graph, tree, matrix perspectives
- \bullet experiments 2-D potential equation
- low rank computations
- blocking strategies
- summary

One submatrix

$$\begin{bmatrix} A_{\Omega_{I},\Omega_{I}} & A_{\Omega_{I},S} & A_{\Omega_{I},\partial S} \\ & A_{\Omega_{J},\Omega_{J}} & A_{\Omega_{J},S} & A_{\Omega_{J},\partial S} \\ A_{S,\Omega_{I}} & A_{S,\Omega_{J}} & A_{S,S} & A_{S,\partial S} \\ A_{\partial S,\Omega_{I}} & A_{\partial S,\Omega_{J}} & A_{\partial S,S} & A_{\partial S,\partial S} \end{bmatrix}$$

Portion of original matrix

Portion of factor matrix

12

Schur complement matrix

Schur complement, separator and external boundary

Outline

- graph, tree, matrix perspectives
- experiments 2-D potential equation
- low rank computations
- blocking strategies
- summary

Computational experiments

- Compute $L_{S,S}$, $L_{\partial S,S}$ and $\widehat{A}_{\partial S,\partial S}$
- \bullet Find domain decompositions of S and ∂S
- Form block matrices, e.g., $L_{S,S} = \sum_{K \ge J} L_{K,J}$
- Find singular value decompositions of each $L_{K,J}$
- Collect all singular values

$$\{\sigma\} = \sum_{K \ge J} \sum_{i=1}^{\min(|K|,|J|)} \sigma_i^{(K,J)}$$

- Split matrix $L_{S,S} = M_{S,S} + N_{S,S}$ using singular values $\{\sigma\}$.
- We want $||N_{S,S}||_F \le 10^{-14} ||L_{S,S}||_F$

 255×255 diagonal block factor $L_{S,S}$ 43% dense, relative accuracy 10^{-14}

16

 754×255 lower block factor $L_{\partial S,S}$ 16% dense, relative accuracy 10^{-14}

754×754 update matrix $\widehat{A}_{\partial S,\partial S}$ 21% dense, relative accuracy 10^{-14}

255×255 factor matrix $L_{S,S}$ storage vs accuracy

19

754×255 factor matrix $L_{\partial S,S}$ storage vs accuracy

754×754 update matrix $\widehat{A}_{\partial S,\partial S}$ storage vs accuracy

21

Outline

- graph, tree, matrix perspectives
- experiments 2-D potential equation
- low rank computations
- blocking strategies
- summary

How to compute low rank submatrices ?

 \bullet SVD – singular value decomposition $A = U \Sigma U^T$

where U and V are orthogonal and Σ is diagonal

- \bullet Gold standard, expensive, ${\cal O}(n^3)$ ops
- QR factorization

$$AP = QR$$

where Q is orthogonal and R is upper triangular, and P is a permutation matrix

• Silver standard, moderate cost, $O(rn^2)$ ops

row norms of R vs singular values of A 754×754 update matrix $\widehat{A}_{\partial S,\partial S}$ 94×94 submatrix size near, mid and far interactions

SVD vs QR with column pivoting — Conclusions :

- \bullet Column pivoting QR factorization does well.
- Row norms of R track singular values σ
- The numerical rank of R is greater than needed, but not that much greater
- For more accuracy/less storage two sided orthogonal factorizations
 - -AP = ULV, U and V orthogonal, L triangular
 - -PAQ = UBV,

U and V orthogonal, B bidiagonal

track the singular values very closely.

Type of approximation of submatrices

• submatrix $L_{I,J}$	of $L_{\partial S,S}$,	$\ L_{I,J}\ _F =$	2.92×10^{-2}
-----------------------	-------------------------	-------------------	-----------------------

factorization	numerical rank	total entries
none		4900
QR	20	$\boldsymbol{2681}$
ULV	18	2680
\mathbf{SVD}	18	$\boldsymbol{2538}$

• submatrix $L_{I,J}$ of $L_{\partial S,S}$, $||L_{I,J}||_F = 2.04 \times 10^{-3}$

factorization	numerical rank	total entries
none		4900
QR	14	$\boldsymbol{1896}$
ULV	10	1447
\mathbf{SVD}	10	1410

Operations with low rank submatrices

$$A = U_A V_A^T, \qquad B = U_B V_B^T, \qquad C = U_C V_C^T$$

See Bebendorf, "Hierarchical Matrices", Chapter 1

• Multiplication A = B C, $rank(A) \le min(rank(B), rank(C))$

$$A = U_A V_A^T = \left(U_B V_B^T \right) \left(U_C V_C^T \right) = BC$$
$$= U_B \left(V_B^T U_C \right) V_C^T$$
$$= U_B \left(\left(V_B^T U_C \right) V_C^T \right)$$
$$= \left(U_B \left(V_B^T U_C \right) \right) V_C^T$$

• Addition A = B + C, $\operatorname{rank}(A) \leq \operatorname{rank}(B) + \operatorname{rank}(C)$ $A = U_A V_A^T = \left(U_B V_B^T\right) + \left(U_C V_C^T\right) = B + C$ $= \left[U_B \ U_C\right] \left[V_B \ V_C\right]^T$

Near-near matrix product

mid-near matrix product

far-near matrix product

mid-mid matrix product

far-mid matrix product

far-far matrix product

$$\begin{aligned} \mathbf{Addition} \ A &= B + C \\ \mathbf{rank}(A) &\leq \mathbf{rank}(B) + \mathbf{rank}(C) \end{aligned}$$

$$A = U_A V_A^T = \left(U_B V_B^T \right) + \left(U_C V_C^T \right) = B + C$$

$$= \left[U_B \ U_C \right] \left[V_B \ V_C \right]^T$$

$$= \left(Q_1 R_1 \right) \left(Q_2 R_2 \right)^T$$

$$= Q_1 \left(R_1 R_2^T \right) Q_2^T$$

$$= Q_1 \left(Q_3 R_3 \right) Q_2^T$$

$$= \left(Q_1 Q_3 \right) \left(R_3 Q_2^T \right)$$

$$= \left(Q_1 Q_3 \right) \left(Q_2 R_3^T \right)^T$$

- $R_1 R_2^T$ usually has low numerical rank
- examples follow

update matrix, diagonal block $\widehat{A}_{3,3} = L_{3,1}L_{3,1}^T + L_{3,2}L_{3,2}^T + L_{3,3}L_{3,3}^T$

update matrix, mid-distance off-diagonal block $\widehat{A}_{5,3} = L_{5,1}L_{3,1}^T + L_{5,2}L_{3,2}^T + L_{5,3}L_{3,3}^T$

update matrix, far-distance off-diagonal block $\widehat{A}_{7,3} = L_{7,1}L_{3,1}^T + L_{7,2}L_{3,2}^T + L_{7,3}L_{3,3}^T$

Outline

- graph, tree, matrix perspectives
- experiments 2-D potential equation
- low rank computations
- blocking strategies
- summary

• Active data structures

$$\begin{bmatrix} L_{J,J} \\ L_{\partial J,J} & \widehat{A}_{\partial J,\partial J} \end{bmatrix}$$

- \bullet partition J and ∂J independently
- \bullet for 2-d problems, J and ∂J are 1-d manifolds
- \bullet for 3-d problems, J and ∂J are 2-d manifolds
- \bullet we need mesh partitioning of the separator and the boundary of a region J
- each index set of a partition is a segment

Segment partition

- The partition of ∂J (local to node J) <u>conforms</u> to the partitions of ancestors K, $K \cap \partial J \neq \emptyset$
- Advantages :
 - Update assembly is simplified

 $\widehat{A}_{\sigma_2,\tau_2}^{(p(J))} = \widehat{A}_{\sigma_2,\tau_2}^{(p(J))} + \widehat{A}_{\sigma_1,\tau_1}^{(J)}$ where $\sigma_1 \subseteq \sigma_2, \ \tau_1 \subseteq \tau_2$

- -One destination for each $\widehat{A}_{\sigma_1,\tau_1}^{(J)}$
- Disadvantages :
 - Partition of ∂J can be fragmented, more segments, smaller size, less efficient storage

- The partition of ∂J (local to node J) <u>need not conform</u> to the partitions of ancestors
- Advantages :
 - Partition of ∂J can be optimized better since ∂J is small and localized
- Disadvantages :
 - Update assembly is more complex

 $\widehat{A}_{\sigma_{1}\cap\sigma_{2},\tau_{1}\cap\tau_{2}}^{(p(J))} = \widehat{A}_{\sigma_{1}\cap\sigma_{2},\tau_{1}\cap\tau_{2}}^{(p(J))} + \widehat{A}_{\sigma_{1}\cap\sigma_{2},\tau_{1}\cap\tau_{2}}^{(J)}$ where $\sigma_{1}\cap\sigma_{2} \neq \emptyset$, $\tau_{1}\cap\tau_{2} \neq \emptyset$ - Several destinations for a submatrix $\widehat{A}_{\sigma_{1},\tau_{1}}^{(J)}$

Outline

- graph, tree, matrix perspectives
- experiments 2-D potential equation
- low rank computations
- blocking strategies
- summary

Multifrontal tree

Multifrontal Factorization

- each leaf node is a *d*-dimensional sparse FEM matrix
- each interior node is a (d - 1)-dimensional dense BEM matrix
- use low rank storage and computation at each interior node

Call to action

- progress to date in low rank factorizations driven by iterative methods
- work needed from direct methods community
- start from industrial strength multifrontal code
 - -serial, SMP, MPP, hybrid, GPU
 - pivoting for stability, out-of-core, singular systems, null spaces

Call to action

- Many challenges
 - partition of space, partition of interface
 - added programming complexity of low rank matrices
 - -challenges to pivot for stability
 - challenges/opportunities
 to implement in parallel
- Payoff will be huge
 - -reduction in storage footprint
 - reduction in computational work
 - -take direct methods to next level of problem size