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Incompressible N-S Equations –
Numerical Challenge 
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Incompressible N-S Equations –
Numerical Challenge (Cont.) 

Pressure-Velocity 
Decoupling Approach

Pressure–Velocity
Coupled Approach

 High numerical robustness  High rate of numerical convergence

 The ''most natural '' way to Low memory consumption

Slow rate of numerical

 The ''most natural '' way to 
solve N-S equations


Slow rate of numerical    

convergence

N h i l fi ld

 The obtained pressure is physical

High memory consumptionNon-physical pressure field

Not applicable for flow–

High memory consumption

Not as numerically robust as    
pressure projection methodsstructures interaction problems pressure projection methods
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LidLid--Driven Rectangular and Cubic Driven Rectangular and Cubic 
CavityCavity
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Discretization in time and spaceDiscretization in time and space
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Second order backward differentiation -
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  Continuity -
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Linearized Navier-Stokes equation; l.h.s. = Stokes operator
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Linearized Navier Stokes equation;  l.h.s.  Stokes operator
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The Full Pressure Coupled Direct 
(FPCD) Time Integration(FPCD) Time Integration

Assembling of  
the Stokes 
operator

LU 
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Obtaining Steady State SolutionObtaining Steady State Solution 

Newton iteration for steady state solutionNewton iteration for steady state solution  
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Krylov Basis Method (BiCGstab)
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Lid Driven Cavity Steady StateLid Driven Cavity- Steady State

Vx , Re=1000 Vy , Re=1000
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Lid Driven Cavity- Steady State (Cont1)Lid Driven Cavity- Steady State (Cont1)

Vx , Re=4000 Vy , Re=4000
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Lid Driven Cavity- Steady State (Cont2Lid Driven Cavity Steady State (Cont2

Vx , Re=8000 Vy , Re=8000 
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Application to the 
Linear Stability Analysis

Inverse formulation with Arnoldi iteration 
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Krylov Basis Method (BICG)
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Difference between two 
consecutive linearized 

Difference between two 
consecutive time steps   

time steps   of the Stokes operator

Good performance for 2D configurationp g

Still a challenge for 3D configuration
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Application to the 
Linear Stability Analysis (Cont)
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3D instability: the most unstable eigenvector3D instability: the most unstable eigenvector

Re≈1920
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3D time-dependent computation
Pressure-velocity coupled + multigrid
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Conclusions

 The FPCD approach utilizing the LU decomposition of the

Conclusions

 The FPCD approach, utilizing the LU decomposition of the
Stokes operator, shows competitive computational times for two
dimensional problems, but remains restricted by the available

t h i li d t th di i l d lcomputer memory when is applied to three-dimensional models.

 A great advantage of the FPCD approach is a constant and a priori 
known CPU time consumed at each time step. Apparently it is not a    
case for any iterative solver.

 The approach may be easily parallelized taking advantage of using     
massively parallel platforms and allowing its extension to  3-D
configurations.configurations.

 The approach easily extended to Newton iteration based steady state  
solves and stability solvers based on inverse Arnoldi iterationsolves and stability solvers based on inverse Arnoldi iteration 
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