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Incompressible N-S Equations –
Numerical Challenge 
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Incompressible N-S Equations –
Numerical Challenge (Cont.) 

Pressure-Velocity 
Decoupling Approach

Pressure–Velocity
Coupled Approach

 High numerical robustness  High rate of numerical convergence

 The ''most natural '' way to Low memory consumption

Slow rate of numerical

 The ''most natural '' way to 
solve N-S equations
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 The obtained pressure is physical
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Not applicable for flow–

High memory consumption

Not as numerically robust as    
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LidLid--Driven Rectangular and Cubic Driven Rectangular and Cubic 
CavityCavity
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Discretization in time and spaceDiscretization in time and space
1 1 1

 
1 1 1

23 4
2

n n n nf f f f Ο t
t t

    
  

 
Second order backward differentiation -

     n 1 n 1 n 1 n 1 n 1 n 1
(i,j,k) (i-1,j,k) (i,j,k) (i,j-1,k) (i,j,k) (i,j,k-1) 0

( 1) ( 1) ( 1)
u u v v w w
Hx i Hy j Hz k

       
  Continuity -

( 1) ( 1) ( 1)Hx i Hy j Hz k  

Linearized Navier-Stokes equation; l.h.s. = Stokes operator

n 1 u n 1 ( 1) n3 na a p RHP        u u uMomentum-

Linearized Navier Stokes equation;  l.h.s.  Stokes operator

(i,j,k) (i,j,k) (i,j,k) (i,j,k)
(i,j,k)2

a a p RHP
τ

    
 uu uMomentum-

i d d l l h dConservative second order control volume method
6 /15 



The Full Pressure Coupled Direct 
(FPCD) Time Integration(FPCD) Time Integration

Assembling of  
the Stokes 
operator
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Obtaining Steady State SolutionObtaining Steady State Solution 

Newton iteration for steady state solutionNewton iteration for steady state solution  
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Lid Driven Cavity Steady StateLid Driven Cavity- Steady State

Vx , Re=1000 Vy , Re=1000
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Lid Driven Cavity- Steady State (Cont1)Lid Driven Cavity- Steady State (Cont1)

Vx , Re=4000 Vy , Re=4000
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Lid Driven Cavity- Steady State (Cont2Lid Driven Cavity Steady State (Cont2

Vx , Re=8000 Vy , Re=8000 
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Application to the 
Linear Stability Analysis

Inverse formulation with Arnoldi iteration 
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Good performance for 2D configurationp g

Still a challenge for 3D configuration
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Application to the 
Linear Stability Analysis (Cont)
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3D instability: the most unstable eigenvector3D instability: the most unstable eigenvector

Re≈1920
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3D time-dependent computation
Pressure-velocity coupled + multigrid
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Conclusions

 The FPCD approach utilizing the LU decomposition of the

Conclusions

 The FPCD approach, utilizing the LU decomposition of the
Stokes operator, shows competitive computational times for two
dimensional problems, but remains restricted by the available

t h i li d t th di i l d lcomputer memory when is applied to three-dimensional models.

 A great advantage of the FPCD approach is a constant and a priori 
known CPU time consumed at each time step. Apparently it is not a    
case for any iterative solver.

 The approach may be easily parallelized taking advantage of using     
massively parallel platforms and allowing its extension to  3-D
configurations.configurations.

 The approach easily extended to Newton iteration based steady state  
solves and stability solvers based on inverse Arnoldi iterationsolves and stability solvers based on inverse Arnoldi iteration 
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