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Area:  Area:  CComputational omputational FFluid luid DDynamicsynamicseaea CCo pu a o ao pu a o a u du d y a csy a cs
CFD is relevant for:

Basic science:
Astrophysics
Classical mechanicsClassical mechanics
Geophysics
Oceanography

Applications:Applications:
Aerospace
Automotive
BiomedicalBiomedical
Chemical Processing
Marine
Oil & GasOil & Gas
Power Generation
Sports



Our current project:Our current project:
spiraling growth of rarespiraling growth of rare earthearth scandatesscandatesspiraling growth of rarespiraling growth of rare--earth earth scandatesscandates

caused by melt flow instabilitiescaused by melt flow instabilities
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Some historySome history



Some historySome history
"Observe the motion of the surface of the waterObserve the motion of the surface of the water,
which resembles that of hair, which has two
motions, of which one is caused by the weight of
the hair, the other by the direction of the curls;
thus the water has eddying motions one part ofthus the water has eddying motions, one part of
which is due to the principal current, the other to
the random and reverse motion.“ Leonardo da
Vinci, translated by Ugo Piomelli, University of
Maryland)Maryland),

1452-1519
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Nowadays  understandingNowadays  understanding
All turbulent features and properties are described by classical All turbulent features and properties are described by classical 

equations of fluid motionequations of fluid motion

Navier-Stokes equation:   fvvvv
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0vdiv
+ boundary & initial conditionscontinuity equation:

With t h i l l ti d t b l t flWith an accurate enough numerical solution we can reproduce turbulent flow 
properties of Reynolds experiment up to Re<10,000

However:  we need larger However:  we need larger ReRe and faster solvers !!!and faster solvers !!!gg



ObjectiveObjective
LowerLower--order CFD solver for order CFD solver for modellingmodelling of of 
fluid dynamics, heat and mass transfer fluid dynamics, heat and mass transfer 

Computational modelling in fluid dynamics : - Steady flows

in nature and technologyin nature and technology
Computational modelling in fluid dynamics : y

- Flow instabilities

- Supercritical flows p

- Turbulent  flows

- Flow control

Numerically challenging tasks: - Solution of nonlinear algebraic equations

- Generalized eigenvalue problem

- Projection on central manifold

Di i l i l i- Direct numerical simulation

- Fast linear system solvers



Steady solver: Steady solver: yy
full Jacobian exact Newton iteration full Jacobian exact Newton iteration 
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System of algebraic equations: 


101055 –– 101077

equations equations 
forfor 22D problemsD problemsX - vector of all nodal values (uij, vij, wij, Tij, pij) for for 22D problemsD problems

Jacobian matrix:   i
ij
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calculated exactly from the numerical scheme 

Newton iterations:
  ,n JδX F X

  
Newton iterations:  

   1n n


  X X δX

  Bottleneck:
each Newton iteration 

needs solution of 
f li isystem of linear equations 

of very large order



Solution of linear equations for Newton iterationSolution of linear equations for Newton iterationSolution of linear equations for Newton iterationSolution of linear equations for Newton iteration

An iterative solver:

- traditional choice:  BiCGstab or GMRES (Krylov subspace)
t lti id ith i l ti l th- we try: multigrid with a semi-analytical smoother

A direct solver for sparse matrices:A direct solver for sparse matrices:

- we use: MUMPS – Multifrontal Massively Parallel Solver

3D problems: out-of-core tool, parallel implementation
to be done in near future



Eigenproblem for analysis of instabilitiesEigenproblem for analysis of instabilities
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Generalized eigenvalue problem
where J is the Jacobian matrix and detB=0
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  Solution: Arnoldi iteration in the shift-and-invert mode    
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Solution: Arnoldi iteration in the shift and invert mode

Choose  as close as possible to the leading eigenvalue 
and calculate several  with the largest ||.

Bottleneck: calculation of the Krylov basis      1 2, , ,..., nx x x x      J B J B J B

The matrix (J−B) is iteration independent !

Calculation of LU-decomposition of (J−B)
resolves the bottleneck ! Instead of an iterative solver use resolves the bottleneck ! a direct solver (we use MUMPS in 

a complex mode)



Performance on a single CPUPerformance on a single CPU

non-isothermal rotating

102

N
2.6

g
flow in a cylinder

2
e

(s
ec

)
10

N
2

N
2.75

N
2

PU
tim

e

101

N

C
P

200 400

100 real Jacobian matrix for Newton iteration
complex Jacobian matrix for linear stability
Arnoldi eigensolver

N=Nr=Nz

200 400



Computer memory demandsComputer memory demands
4104

non-isothermal rotating

flow in a cylinder

yt
es

)
103

3

flow in a cylinder

N
2.3

ry
(M

by

N
2.3

M
em

or

102

real Jacobian matrix for Newton iteration
complex Jacobian matrix for linear stability

N=Nr=Nz

100 200 300 400 500101
complex Jacobian matrix for linear stability



Test problems in rectangular geometryTest problems in rectangular geometry
Int. J.Int. J. NumerNumer. Meth. Fluids,. Meth. Fluids, 20072007, vol., vol. 5353, pp., pp. 485485--506506Int. J. Int. J. NumerNumer. Meth. Fluids, . Meth. Fluids, 20072007, vol. , vol. 5353, pp. , pp. 485485 506506

B tiBuoyancy convection:
Marangoni convection:

- Different boundary conditions
- Different Prandtl numbers
- Different aspect ratios



Test problems in cylindrical geometryTest problems in cylindrical geometry
Int. J. Int. J. NumerNumer. Meth. Fluids, . Meth. Fluids, 20072007, vol. , vol. 5454, pp. , pp. 269269--294294pppp

Buoyancy 
convection in non-

Thermocapillary 
convection in non

Isothermal and 
non-isothermal

Thermocapillary 
convection inconvection in non

uniformly heated 
cylinders

convection in non-
uniformly heated 

cylinders

non-isothermal 
flow in a cylinder 
with rotating disk

convection in 
annular pools
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Effect of stretching   Effect of stretching   
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Convergence and effect Convergence and effect of stretching   of stretching   

Test case: convection in square cavity, A=1, Pr=0, 
G 9 472×106 8242Grcr=9.472×106, cr=8242
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TimeTime--dependent solver using MUMPSdependent solver using MUMPS

Assembling Assembling of of the the 
LU F t i tiLU F t i ti U d tiU d ti RHPRHP

STARTSTART

gg
Stokes Operator Stokes Operator A A 

for Momentumfor Momentum--
Continuity System Continuity System 

LU Factorization LU Factorization 
of Aof A

MUMPSMUMPS

Updating Updating RHPRHP
of the of the EEnergy Equationnergy Equation

Solution of the Energy Solution of the Energy 
Equation toEquation to
Obtain   Obtain   n+n+11

NoNo

Updating RHP of 
the Momentum 

Equations

Backward SubstitutionBackward Substitution
to to ObtainObtain
vvn+n+11, , ppn+n+11

Is the Steady Is the Steady 
State or Time State or Time 

Limit Reached?Limit Reached?

YesYesFINISHFINISH

MUMPSMUMPS
Limit Reached?Limit Reached?

The Full Pressure Coupled Direct (FPCD) Solution



An efficient 3D time marching solver The FPCD CharacteristicsThe FPCD Characteristics
(Cont.1)
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C

Direct method treats whole computational domain

Constant numerical convergence rate

B d lti f t l l (MUMPS k )Based on multi-frontal sparse solver (MUMPS package)

Highly effective only for linearized problems (Stokes operator implementation)

Extremely memory demanding for 3D calculations (no more then 803 resolution up to now)

Non-parallelized back-substitution prevents multi-processor computations

18



Making a steady state solver from a timeMaking a steady state solver from a time--stepper stepper 
(together with L. Tuckerman)(together with L. Tuckerman)( g )( g )

Navier-Stokes equation:    tULNU Ut Navier-Stokes equation:    Ut

Semi-implicit time step:        ttULNttUttU U p p        
     tUtNItLI U

U

 1

An idea: instead of classical Newton iteration     uUU,UAuLNU 

Consider an equivalent equation:

         )U(AuItNItLItuttu  1        
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1

Each time step produced by the MUMPS back substitution produces a new Krylov 
basis vector for BiCGstab algorithm



Making an eigenvalue solver from a timeMaking an eigenvalue solver from a time--stepper stepper 
((together with Ltogether with L. Tuckerman). Tuckerman)(( gg ))

Stability problem:   0 BdetvLNBvStability problem:   0 Bdet,vLNBv U

To build Krylov basis for shift-and-inverse Arnoldi iteration process we need to solve:y p
     n

U
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           vBNLtLBtvttv n
U

nn   1111 
An idea: consider an equivalent equation:

         tvttvvtLB nnn  1one linearized time step

one linear time step

MUMPS back substitution

and combine the time-stepper with BiCGstab algorithm



Examples of results:Examples of results: multiplicitymultiplicity
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Convection of water in partially heated cavity (Gelfgat’s group)
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Examples of results:Examples of results: stability diagramsstability diagrams
Convection in laterally heated cavity
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Examples of results:Examples of results: melting of a square blockmelting of a square block
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ElectromagneticsElectromagnetics:  Maxwell vs. Helmholtz equations:  Maxwell vs. Helmholtz equations

Maxwell equations: Helmholtz equations:
d
div
div
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 for each component

...
Ej  divhB ≠ 0, divhE ≠ 0



ElectromagneticsElectromagnetics:  results for rotating magnetic field:  results for rotating magnetic field



ConcludingConcluding remarksremarksConcluding Concluding remarksremarks

• Where MUMPS is successfully applies it yields acece MUMPS • Where MUMPS is successfully applies it yields a 
qualitative improvement of results
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Iterative solvers

• We have more ideas for future studies
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Thanks for the nice tool !!!Thanks for the nice tool !!!


