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The Bacchus team at INRIA Bordeaux

• Purpose
•Develop and validate numerical methods and tools 

adapted to problems modeled by PDEs of hyberbolic 
type

–Fluid dynamics, aeroacoustics, geophysics MHD, …

• Mixed CS / NA team
•Head: Rémi Abgrall
•7 staff, 10+ interns/PhD/PostDocs

• Tools
•Simulation platform (FluidBox), Mesher (MMG3D), 

Solvers (PaStiX, HIPS), Partitioner (Scotch), ...
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Features of Scotch  (1)

• Toolbox of graph partitioning methods, 
which can be used in numerous contexts

• Sequential Scotch library
• Graph partitioning (edge or vertex)

• Mesh partitioning (elements)

• Static mapping (edge dilation)

• Graph reordering

• Mesh reordering

• Parallel PT-Scotch library
• Graph partitioning (edge)

• Static mapping (edge dilation) [prototype]

• Graph reordering
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Features of Scotch  (2)

• Usable by means of library function calls or through 
command-line programs

• Can be called from C or FORTRAN
• Reentrant routines usable in a multi-threaded context

• Support of adaptive graphs and meshes
• Discontinuous data indexing to enable adding vertices

• Software developed in ANSI C
• MPI for message-passing, optional use of pthreads

• Dynamic parametrization of partitioning methods by means 
of strategy strings (feature or punishment ?  ;-)  )

• Version 5.1 available under CeCILL-C free software license
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Results for parallel ordering (1)
Test Number o f p rocesses
case 2 4 8 16 32 64

audikw1
5.73E+12 5.65E+12 5.54E+12 5.45E+12 5.45E+12 5.45E+12

5.82E+12 6.37E+12 7.78E+12 8.88E+12 8.91E+12 1.07E+13

73.11 53.19 45.19 33.83 24.74 18.16

32 .69 23.09 17.15 9.80 5.65 3.82
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Results for parallel ordering (2)
Test Number o f processes
case 2 4 8 16 32 64

cage15

4.58E+16 5.01E+16 4.64E+16 4.94E+16 4.58E+16 4.50E+16
4.47E+16 6.64E+16 † 7.36E+16 7.03E+16 6.64E+16

540.46 427.38 371.70 340.78 351.38 380.69

195.93 117.77 † 40.30 22.56 17.83
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Results for parallel partitioning (1)
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Results for parallel partitioning (2)
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Results for parallel partitioning (3)

•                                          
                                     

• Gets worse when 
number of parts 
increases as direct k-
way is better than 
recursive bisection

• Partition quality of 
ParMeTiS is irregular 
for small numbers of 
parts
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•
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Where we are now...

• Parallel sparse matrix ordering :
• Bottleneck removed for the near future

– More work to be done as size of problems increases
• Full 3D graph of 82+ million unknowns ordered, and 

system solved by the PaStiX parallel direct solver on 
the Tera10 machine at CEA

• Parallel graph partitioning :
• Parallel k-way graph partitioning by recursive 

bipartitioning
• Direct k-way parallel graph partitioning almost complete
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Where we are heading to...

• Upcoming machines will comprise very large numbers of 
processing units, and will possess NUMA / heterogeneous 
architectures

• More than a million processing elements on the Blue 
Waters machine to be built at UIUC (joint lab with 
INRIA)

• Impacts on our research :

• Topology of target architecture has to be taken into 
account

– Static mapping and not only graph partitioning
• Dynamic repartitioning capabilities are mandatory
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The Scotch roadmap

• Devise robust parallel graph partitioning methods
• Should handle graphs of more than a billion vertices 

distributed across one thousand processors

• Devise robust parallel static mapping methods
• Heterogeneousness of parallel architectures increases 

along with number of cores

• Improve sequential graph partitioning methods if possible

• Fiduccia-Mattheyses-like local optimization algorithms 
are both fast and efficient on a very large class of 
graphs but are intrinsically sequential

• Investigate alternate graph models (meshes/hyper-graphs)
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Design constraints

• Parallel algorithms have to be carefully designed :
• Algorithms for distributed memory machines
• Preserve independence between the number of parts 

k and the number of processing elements P on which 
algorithms are to be executed

• Algorithms must be “quasi-linear” in |V| and/or |E|
• Constants should be kept small !

– Theory is not likely to help much...

• Data structures must be scalable :
• In |V| and/or |E| : graph data must not be duplicated

• In P and k : arrays in k|V| , k2, kP, P|V| or P2 are 
forbidden
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Parallel static mapping (1)

• • Compute a mapping of V(S) and E(S) of source graph S to 
V(T) and E(T) of target architecture graph T, respectively

• Cost function to minimize accounts for distance

• Brings gains up to 20 % on solving time on “regular” multi-
core architectures, and even more for really heterogeneous 
clusters

S

T

• Static mapping features 
are already present in the 
sequential Scotch library

• We have to go parallel
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Parallel static mapping (2)

• Decision making depends on available mapping information
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Parallel static mapping (3)

• Recursive bi-mapping cannot be transposed in parallel
• All subgraphs at some level are supposed to be processed 

simultaneously for parallel efficiency

• Yet, ignoring decisions in neighboring subgraphs can lead to 
“twists”

• Only sequential processing works!

1

2

4

3
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Parallel static mapping (4)

• Parallel multilevel framework for static mapping
• Parallel coarsening and k-way mapping refinement

• Initial mapping by sequential recursive bi-mapping
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• Parallel matrix computations
• Block decomposition with overlap

• Several application domains
• Quantum chemistry
• Schur complement techniques for linear system solving

K-way vertex partitioning with overlap (1)
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K-way vertex partitioning with overlap (2)

• Compute k vertex-separated parts

• Balance part loads according to inner vertices as well as 
neighboring separator vertices

• Separator vertices may contribute to several parts
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Dynamic remeshing and repartitioning

• Move upwards from the production of general-purpose 
tools to more specific application domains

• Motivation for joining the Bacchus team
• Parallel adaptive remeshing

• Take into account the numerical stability of the problem 
being studied

• Take advantage of the work done in PT-Scotch on 
distributed graphs

• Dynamically repartition the remeshed graphs
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