

www.esi-group.com

Feedback on the Utilization of MUMPS in ESI's Implicit Structural Mechanics FEM Solver

Antoine Petitet, Benoit Lodej

MUMPS Users' Group Meeting April 16, 2010

1

PAM-CRASH/SAFE: Main Applications

- Frontal full and offset Impact
- Side impact
- Airbag deployment

C get it right^T Hardware/Software Evolution in CRASH Simulation

- Vectorization (Cray X-MP)
- SMP OpenMP (SGI Origin)
- **DMP MPI (IBM SP, 2000)**
- SMP + DMP (Multi-cores, 2009)

- Large scale multi-core clusters (mainly Linux based)
- Support various interconnects (Ethernet, Infiniband, Myrinet, ...)
- Hybrid parallelism reduce inter-node communications and take advantage of shared-memory architecture of the nodes
- SMP allows for partial load balancing which is difficult with static domain decomposition.

Towards Implicit Methods

- Historically, explicit solver where the matrices are not assembled.
- Since 2008, addition of implicit methods to the solver to tackle static linear, quasi static non linear problems and frequency analysis.
- With implicit methods, large and sparse matrices are effectively assembled and linear systems need to be solved.
- Since 2008, PAMCRASH implicit relies on MUMPS to solve these systems.
- In 2009, implicit solver for DMP released.

C get it right[™]

MUMPS Features Current Utilization

- Single and double precision, real and complex.
- Symmetric and non-symmetric matrix operands.
- Distributed assembled COO input format for analysis and factorization.
- Default orderings (+ Metis) and scalings:
 - ParMetis under evaluation (fill-in, degenerated cases)
 - PT-Scotch evaluation to be done.
- Error analysis (condition number estimation) used internally during development.
- Transposed system solve not used.
- Schur complement not used yet ...

MUMPS Features Current Utilization (2)

- SMP and DMP versions.
- Integer*8 storage for factors.
- OOC enabled and certainly in use by our customers especially in feasability testing.
- Centralized dense right-hand sides.
- Sparse right-hand sides could be used, but not done yet.
- Distributed solution is not used.
- Memory information is always used to monitor its use.
- Matrix inertia used by eigenvalue solvers.
- Null pivot rows detection enabled with defaults.
- Iterative refinement (enabled but not necessary so far.)

get it right^{*} MUMPS Features From ESI Point of View

+ Ease of build and use, portability (in use on a dozen of platforms by PAMCRASH), robustness.

- + Very few problems and very good support. Most of the time, the problems are in our poor reading of the MUMPS User guide.
- + Comprehensive set of features.
- + DMP enabled, scalability.
- Source code is hard to read.
- Relatively poor SMP speedup, opportunity to save memory (increasingly important on current clusters).
- Error analysis, inertia in DMP

get it right[™]

Performance

- Nehalem cluster, 4 cores per socket, 2 socket per node, Xeon E5530, 2.4 Ghz, 3 Gb per core, (Linux 5.3)
- Infiniband, HP-MPI 2.2.5.1
- Intel compiler 11.1.046, MKL 10.1
- MUMPS 4.9.2, ARPACK, ScaLAPACK, BLACS
- **PAMCRASH 2010.0**
- 4 representative test cases, one static linear case (hood), 2 eigenvalue problems (car1 and car2), and one quasi static non linear case with contact.
- Scalability in terms of memory footprint per core at the application level and speedups.

Hood: Matrix graph

15

- K u = f
- $K = K^T$
- N = 0.915 m
- NNZ = 24.864 m

Hood: Memory Footprint

C get it right[™]

Hood: Speedup

Nb Proc	Solves	Analysis (s)	Fact. (s)	Fact. Speedup	Solve (s)	Solve Speedup
1	1	13.5	93.8	1.00	0.80	1.00
2	1	12.0	59.8	1.56	0.75	1.06
4	1	13.7	31.1	3.01	0.43	1.86
8	1	12.0	19.4	4.83	0.27	2.96
16	1	12.2	11.9	7.88	0.21	3.80

- 2 nodes, sequential Metis.

- Factorization: very good speedup up to 4 processes.
- Solves does not scale as well as factorization, but it does not matter so much here.

Car1 (BiW): Stiffness and Mass Matrices

K - σ M = 0, N = 3.417 m

$M = M^{T}$, NNZ = 30.465 m

$K = K^{T}$, NNZ = 97.653 m

www.esi-group.com

Car (BiW) 1: Memory Footprint

www.esi-group.com

C get it right[™]

Car (BiW) 1: Speedup

Nb Proc	Solves	Analysis (s)	Fact. (s)	Fact. Speedup	Solve (s)	Solve Speedup
1	46	42.8	580.0	1.00	242.0	1.00
2	46	28.4	460.0	1.26	141.0	1.71
4	46	32.3	191.0	3.03	59.0	4.1
8	46	27.8	128.0	4.53	45.6	5.3
16	46	28.7	67.0	8.65	36.7	6.6

- 2 nodes, 10 eigenvalues, sequential Metis.

 Factorization and solves : very good speedup up to 4 processes.

Car (BiW) 2: Memory Footprint get it right[™] 12000 Memory Usage per Process (8 procs) Memory Usage per Process (16 procs) Memory Usage per Process (32 procs) 80 Mb 10000 $K - \sigma M = 0, K = K^{T}, N = 8.652 \text{ m}, NNZ = 221.694 \text{ m}$ 8000 Memory (Mo) 95 Mb 6000 101 Mb 4000 2000 0 Process Rank

Car (BiW) 2: Speedup

Nb Proc	Solves	Analysis (s)	Fact. (s)	Fact. Speedup	Solve (s)	Solve Speedup
8	91	94.6	315.0	1.00	206.0	1.00
16	91	95.0	194.0	1.62	186.0	1.10
32	91	97.5	108.0	2.91	133.0	1.54

- 4 nodes, 20 eigenvalues, sequential Metis.

- Factorization: good speedup from 8 to 32 processes.
- Solves does not scale as well and becomes the dominant cost of the computation.

C get it right[™]

Contact case

_ ((())))))

Newton Method, non symmetric matrix
N = 0.215 m, NNZ = 6.826 m

Increment 17

www.esi-group.com

Copyright © ESI Group, 2010. All rights reserved.

Contact case: Memory Footprint

C, get it right[™]

Contact Case: Performance

Nb Proc	Analysis	Fact.	Analysis (s)	Fact. (s)	Solve (s)
1	259	575	611.6	2349.4	85.6
2	248	562	1150.2	1739.4	73.1
4	266	574	1272.1	1315.5	74.3
8	247	550	1092.6	1501.0	52.8
16	269	566	1234.6	2620.1	68.2

Results are difficult to compare as the matrices vary with the number of processes and the number of iterations. get it right[™]

Conclusions

- Factorization scales reasonably well. Memory footprint always scales very well.
- In eigenvalue solvers, solves may rapidly become the dominant cost of the computation.
- It is sometime rather difficult to figure out what causes performance degradations.
- Portability, robustness, performance and support are the major MUMPS features that have convinced us to use it in one of our major product.
- MUMPS is currently a fundamental component of the ESI implicit structural mechanics FEM solver.

www.esi-group.com