

# From a finite element model to system level simulation by means of model reduction

**MUMPS Users Meeting 2010, Toulouse** 

Evgenii Rudnyi, CADFEM GmbH erudnyi@cadfem.de http://ModelReduction.com



#### Content

- System level simulation and compact modeling
- Model order reduction
- Case studies with MOR for ANSYS
- Experience with MUMPS solver





#### **Device and System Level Simulation**



How to make a model at system level from that at device level?



#### **Compact Modeling: Transistor Compact Model**

$$I_{E} = I_{F0}(e^{qV_{EB}/kT} - 1) - \alpha_{R}I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{CB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1) - I_{R0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F0}(e^{qV_{EB}/kT} - 1)$$

$$I_{E} = \alpha_{F}I_{F$$

CADFE

Figure from J. Lienemann, E. B. Rudnyi and J. G. Korvink. MST MEMS model order reduction: Requirements and Benchmarks. Linear Algebra and its Applications, v. 415, N 2-3, p. 469-498, 2006.

#### **Compact Thermal Models**



Looks understandable – but how to do it in practice?

Figure from the book "Fast Simulation of Electro-Thermal MEMS: Efficient Dynamic 4 Compact Models." Springer, 2006.

#### **Comparison: Electrical vs. Thermal**



 Thermal phenomena are much more distributed, it is hard to lump them.

Figure from the book "Fast Simulation of Electro-Thermal MEMS: Efficient Dynamic Compact Models." Springer, 2006.



#### Content

- System level simulation and compact modeling
- Model order reduction
- Case studies with MOR for ANSYS



Experience with MUMPS solver



#### **Model Order Reduction**

- Relatively new technology:
  - It is not mode superposition;
  - It is not Guyan reduction;
  - It is not CMS.
- Solid mathematical background:
  - Approximation of large scale dynamic systems
- Dynamic simulation:
  - Harmonic or transient simulation
- Industry application level:
  - Linear dynamic systems





#### Linear Model Order Reduction



## **Model Reduction as Projection**

 Projection onto lowdimensional subspace

$$E\dot{\mathbf{x}} + K\mathbf{x} = B\mathbf{u}$$

$$E$$
 . +  $K$  . =  $F$ 

 $V^T E V \dot{\mathbf{z}} + V^T K V \mathbf{z} = V^T B \mathbf{u}$ 

$$\mathbf{x} = V\mathbf{z} + \boldsymbol{\varepsilon}$$



- \_\_\_\_
- How to find subspace?
- Mode superposition is not the best way to do it.

$$E_r$$
 · +  $K_r$  · =  $F_r$  ·



#### Hankel Singular Values

 Dynamic system in the statespace form: *X* 

$$= Ax + Bu$$
  

$$y = Cx$$
  

$$H(s) = C(sI - A)^{-1}B$$

- Lyapunov equations to determine controllability and observability Grammians:
- Hankel singular values (HSV):
  - square root from eingenvalues for product of Grammians.

$$AP + PA^T + BB^T = 0$$

$$A^T Q + Q A + C^T C = 0$$

$$\sigma_i = \sqrt{\lambda_i(PQ)}$$



#### **Global Error Estimate**

Infinity norm

$$\left\| H(s) - \hat{H}(s) \right\|_{\infty} =$$
$$= \max_{s} abs(H(s) - \hat{H}(s))$$

 Global error for a reduced model of dimension k

$$\left\| H(s) - \hat{H}(s) \right\|_{\infty} < 2(\sigma_{k+1} + \ldots + \sigma_n)$$

 Model reduction success depends on the decay of HSV.



- Log10[HSV(i)] vs. its number.
- From Antoulas review.



#### **Implicit Moment Matching**

- Padé approximation
- Matching first moments for the transfer function



#### Krylov-subspace methods for reduced-order modeling in circuit simulation

Rohad W. Freund

Bell Laboratorio, Lacori Technologic, Boure 1C:525, '00 Monitori Atenue, Hurray Hill, New Joresy 07974:0006, USA

Konnyod 11 September 1999; occavad in myteel form 9 December 1999

Ableast

The instantics of discretion investor for mesonical dentities of very large-scale, sparse, in general analysis, sparse of diffusional degrees arguments. Drives the site of these sparses can be reduced constraintify by reprincing the equations corresponding to force reformance by approximate models of resch scalar rates-space dimension. In this paper, an devalue the cost (Saylos andregen worked) for generating stark indexed-outly models of force advancements. Particular anglests is on refuced-andre modeling inclusions that province the guaranty of funce BLC indextrusts. Sp. 200 Elevers Science BV, AL inglish contrast.

Keywords Langue algorithm, Amolds process, Lange dynamical system, VLSI interconners, Tanafte function, Pade approximation, Sublidity, Positivity, Positive and function.

- Implicit Moment Matching:
  - via Krylov Subspace

$$E\dot{\mathbf{x}} + K\mathbf{x} = B\mathbf{u}$$

$$H(s) = \P E + K \stackrel{=}{\_} B$$

$$H = \sum_{0}^{\infty} m_i (s - s_0)^i$$

$$H_{red} = \sum_{0}^{\infty} m_{i,red} (s - s_0)^i$$

$$m_i = m_{i,red}, \quad i = 0, \dots, r$$

 $s_0 = 0$  $V = span\{\Im(K^{-1}E, K^{-1}b)\}$ 



#### **Second Order Systems**



Sensors and Materials, Vol. 19, No. 3 (2007) 149–164 MYU Tokyo

SIAM J. SCI. COMPUT. Vol. 26, No. 5, pp. 1692–1709 © 2005 Society for Industrial and Applied Mathematics

S & M 0672

#### Parametric Order Reduction of Proportionally Damped Second-Order Systems

#### Rudy Eid<sup>\*</sup>, Behnam Salimbahrami, Boris Lohmann, Evgenii B. Rudnyi<sup>1</sup> and Jan G. Korvink<sup>1</sup>

Institute of Automatic Control, Technical University of Munich, Boltzmannstr 15, 85748 Gurching, Germany Institute for Microsystem Technology (IMTEK), University of Freiburg, 79085 Freiburg, Germany

(Received October 25, 2006; accepted February 22, 2007)

#### DIMENSION REDUCTION OF LARGE-SCALE SECOND-ORDER DYNAMICAL SYSTEMS VIA A SECOND-ORDER ARNOLDI METHOD<sup>\*</sup>

#### ZHAOJUN BAIT AND YANGFENG SUT

Abstract. A structure-preserving dimension reduction algorithm for large-scale second-order dynamical systems is presented. It is a projection method based on a second-order Krylov subspace. A second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection subspace. The reduced system not only preserves the second-order structure but also has the same order of approximation as the standard Arnoldi-based Krylov subspace method via linearization. The superior numerical properties of the SOAR-based method are demonstrated by examples from structural dynamics and microelectromechanical systems.



#### **Error Indicator**

- Key question : What is a suitable order of the reduced system for a desired accuracy?
- "Rule of thumb": r = 30-50
- Proposed engineering approach:
  - comparison of reduced systems of order r and r + 1





JOHNS, OF MERCHANCE AND MERCHANDERS

doi:10.1088/0980-1317/15/3/002

#### Error indicators for fully automatic extraction of heat-transfer macromodels for MEMS

Tamaru Bechtold, Evgenii B Rudnyi and Jan G Korvink

IMTEK, University of Faciliang, Georges-Köhler-Allee 105, 79110 Faciliang, Germany E-mail: bachtold@imtek.de

Received 14 June 2004, in final form 15 October 2004 Published 16 December 2004 Colline of the International Colline (1997)



#### **Convergence of Relative Error**



#### Main result:







#### **Nonlinear Input**



#### Information on ModelReduction.com

| 🕑 🕶 🖻 http://m                                                                      | rodelreduction.com/ModelR                                                     | eduction/                                                            |                                                                                                       |                                             | -                                                 | 🖌 😽 🗶 Google                                                 | 2           |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|-------------|
| Bearbeiten An                                                                       | sicht Favoriten Extras 3                                                      |                                                                      |                                                                                                       |                                             |                                                   |                                                              |             |
| 🏟 🙍 Model Rec                                                                       | duction                                                                       |                                                                      |                                                                                                       |                                             | <del>ن</del> آناً                                 | 🛛 🔹 👘 🔹 🔂 Seite 🔹                                            | 🔵 Extras 🔹  |
| cussion group fo                                                                    | r model reduction: <u>http://</u><br>roups.com.                               | groups.google.com/grou                                               | odeiReduc<br>up/mor4ansys You car                                                                     | rtion.com                                   | or by sending a d                                 | lummy e-mail to <u>mor4ans</u> y                             | / <u>S-</u> |
| K Fast Simulatio                                                                    | on of Electro-Thermal M.                                                      | EMS: Efficient Dynamic                                               | Compact Models. Bo                                                                                    | ok at <u>Amazon</u> or <u>S</u><br>Teaching | MOR for A                                         | NSYS                                                         | -1          |
| rivine                                                                              | Model Reduction                                                               | App                                                                  | nearions                                                                                              | The second second second                    |                                                   |                                                              |             |
| MOR Hor                                                                             | me Linear                                                                     | Second Order                                                         | Parametric                                                                                            | Weakly                                      | Nonlinear                                         | Nonlinear                                                    |             |
| MOR Hor<br>odel Orc<br>del reduction<br>erential equat<br>shown in Fig.             | der Reduction<br>or model order redu<br>ions (ODEs), The m<br>1.              | Second Order<br>ON<br>ction is a mathemati<br>ain idea is that a hig | Parametric<br>ical theory to find a<br>h-dimensional state                                            | Weakly<br>Now-dimension                     | Nonlinear<br>al approximatic<br>ally belongs to   | Nonlinear<br>on for a system of ord<br>a low-dimensional sub | linary      |
| MOR Hor<br>MOR Hor<br>odel Orc<br>del reduction<br>terential equat<br>shown in Fig. | me Linear<br>der Reduction<br>or model order redu<br>ions (ODEs). The m<br>1. | Second Order                                                         | Parametric<br>ical theory to find a<br>h-dimensional state<br>$\mathbf{x} = V\mathbf{z} + \mathbf{z}$ | Weakly<br>Now-dimension<br>e vector is actu | Nonlinear<br>al approximatic<br>ally belongs to a | Nonlinear                                                    | linary      |



#### Content

- System level simulation and compact modeling
- Model order reduction
- Case studies with MOR for ANSYS
- Experience with MUMPS solver









# MOR for ANSYS: <a href="http://ModelReduction.com">http://ModelReduction.com</a>



Current version 2.5



#### **Implicit Moment Matching**

- Take matrix and vector corresponding to a given expansion point.
- Compute the orthogonal basis by the Arnoldi process.
- Project the original system on this basis.
- One can prove that this way the reduced model matches k moments.

$$s_0 = 0$$
  $P = A^{-1}E$   $r = A^{-1}b$   
 $V = span\{\Im(A^{-1}E, A^{-1}b)\}$ 

$$V = span\{r, Pr, P^2r, \dots P^{k-1}r\}$$

- Multiple inputs:
  - Block Krylov Subspace;
  - Block Arnoldi;
  - Superposition Arnoldi.



#### **Treating Matrix Inverse**

- The Arnoldi process requires matrix vector product.
- Yet, we have a matrix inverse.
- Instead solve a system of linear equations.
- This is the biggest computational cost:
  - Number of vectors x time for linear solve.
- Direct solver has strong advantage.

$$v_{i+1} = A^{-1}Ev_i$$

$$u_{i+1} = A^{-1}u_i$$

$$Au_{i+1} = u_i$$

- $\Rightarrow The only right hand side is different.$
- $\Rightarrow$  Can be used to speed it up.



#### MOR for ANSYS Timing: MOR as Fast Solver

Reduced model of dimension 30

| Dimension,<br>DoFs | nnz        | MOR Time<br>/ANSYS<br>static |
|--------------------|------------|------------------------------|
| 4 267              | 20 861     | 1.4                          |
| 11 445             | 93 781     | 1.8                          |
| 20 360             | 265 113    | 1.7                          |
| 79 171             | 2 215 638  | 1.5                          |
| 152 943            | 5 887 290  | 2.2                          |
| 180 597            | 7 004 750  | 1.9                          |
| 375 801            | 15 039 875 | 1.7                          |





## **Chip and its Model in Workbench**





#### Two power MOSFET transistors

The example is from T. Hauck, I. Schmadlak, L. Voss, E. B. Rudnyi. *Electro-Thermal Simulation of Multi-channel Power Devices: From Workbench to Simplorer by means of Model Reduction*. NAFEMS, Seminar: Multi-Disciplinary Simulations - The Future of Virtual Product Development, 2009



#### **Import Reduced Model in Simplorer**

Simplorer supports state space model

| icE              | ditor - [merlot - Comparison - | Sc | he   | matic]                             |
|------------------|--------------------------------|----|------|------------------------------------|
| Si               | mplorer Circuit Tools Window   | Н  | lelp |                                    |
|                  | Design <u>S</u> ettings        |    |      | .   ▶   44 €   5   5 5   0 × ⊗ ⊫ ⊭ |
|                  | SybCircuit                     | Þ  | +₿   | Add <u>S</u> ubCircuit             |
|                  | <u>S</u> olution Setup         | ۲  |      | Add Simulink Component             |
|                  | Import SDB File                |    |      | Add MathCad Component              |
|                  | Optimetrics Analysis           | ۲  |      | Maxwell Component                  |
|                  | <u>R</u> esults                | ۲  |      | Add RMxprt Dynamic Component       |
|                  | Optimetrics Results            |    |      | Q3D Dynamic Component              |
|                  | Desian Properties              |    |      | Add PExprt Static Component        |
|                  | Passed Parameters              |    |      | Add Mechanical Component           |
|                  | Edit <u>N</u> otes             |    |      | Add Icepak Component               |
| <b>□∨</b><br>+:+ | <br>Output Dialog Ctrl+Shift+O |    |      | Add State Space Component          |

| 101                                                              |                                                                                                                                                              |                                                                                                                                                    |                                                                                              |                                                                                            |                                                                                                |                                                                                              |                                                                                   |                                                                                           | Show Name                                                                                             |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| -Model Type                                                      |                                                                                                                                                              |                                                                                                                                                    |                                                                                              |                                                                                            |                                                                                                |                                                                                              |                                                                                   |                                                                                           |                                                                                                       |
| I Formula                                                        | ation (                                                                                                                                                      | C Y Formulation                                                                                                                                    |                                                                                              | O S F                                                                                      | ormulatior                                                                                     |                                                                                              | O No                                                                              | n-Conserv                                                                                 | vative                                                                                                |
| -Model Parameter                                                 | Termina                                                                                                                                                      | Terminal Reference                                                                                                                                 |                                                                                              |                                                                                            |                                                                                                |                                                                                              | on ———                                                                            |                                                                                           |                                                                                                       |
| No. of States:                                                   | ON                                                                                                                                                           | one                                                                                                                                                |                                                                                              |                                                                                            | V                                                                                              | Use Del                                                                                      | fault                                                                             |                                                                                           |                                                                                                       |
| No. of Termina                                                   | als: 2                                                                                                                                                       |                                                                                                                                                    | ommon                                                                                        |                                                                                            |                                                                                                |                                                                                              |                                                                                   |                                                                                           | _                                                                                                     |
| Duracia Ita                                                      |                                                                                                                                                              | C In                                                                                                                                               | dopondor                                                                                     | ÷                                                                                          |                                                                                                | Zr                                                                                           | ef Value                                                                          | 50                                                                                        |                                                                                                       |
| Domain jink                                                      |                                                                                                                                                              | , , , , , , , , , , , , , , , , , , , ,                                                                                                            |                                                                                              |                                                                                            |                                                                                                |                                                                                              |                                                                                   |                                                                                           |                                                                                                       |
| √C 2x30                                                          |                                                                                                                                                              |                                                                                                                                                    |                                                                                              |                                                                                            |                                                                                                |                                                                                              |                                                                                   |                                                                                           |                                                                                                       |
| <ul> <li>✓C 2x30</li> <li>✓D 2x2</li> <li>✓IC 30x1</li> </ul>    | Enter Matrix                                                                                                                                                 |                                                                                                                                                    |                                                                                              |                                                                                            |                                                                                                |                                                                                              |                                                                                   | P                                                                                         | opulate<br>Viewer                                                                                     |
| <ul> <li>✓C 2x30</li> <li>✓D 2x2</li> <li>✓IC 30x1</li> </ul>    | Enter Matrix                                                                                                                                                 | 2 3                                                                                                                                                | 4                                                                                            | 5                                                                                          | 6                                                                                              | 7                                                                                            | 8                                                                                 | 9                                                                                         | opulate<br>Viewer                                                                                     |
| <ul> <li>✓C 2(30)</li> <li>✓D 2x2</li> <li>✓IC 30x1</li> </ul>   | Enter Matrix                                                                                                                                                 | 2 3<br>.3392 -162.362                                                                                                                              | 4                                                                                            | 5                                                                                          | <u>6</u><br>-847.086                                                                           | 7<br>967.458                                                                                 | 8<br>-1232.45                                                                     | 9<br>1557                                                                                 | opulate<br>Viewer<br>10 -1707.0                                                                       |
| <ul> <li>✓ C 2x30</li> <li>✓ D 2x2</li> <li>✓ IC 30x1</li> </ul> | Enter Matrix                                                                                                                                                 | 2 3<br>.3392 -162.362<br>3.2071 71.1535                                                                                                            | 4<br>287.321<br>-126.621                                                                     | 5<br>-192.17<br>84.86                                                                      | 6<br>-847.086<br>377.842                                                                       | 7<br>967.458<br>-437.748                                                                     | 8<br>-1232.45<br>555.168                                                          | 9<br>1557<br>-688.629                                                                     | opulate<br>Viewer<br>10 ▲<br>-1707.0<br>756.255                                                       |
| <ul> <li>✓ C 2x30</li> <li>✓ D 2x2</li> <li>✓ IC 30x1</li> </ul> | Enter Matrix                                                                                                                                                 | 2 3<br>.3392 -162.362<br>3.2071 71.1535<br>.501 -97.7755<br>11538 152 172                                                                          | 4<br>287.321<br>-126.621<br>174.649<br>-274 455                                              | 5<br>-192.17<br>84.86<br>-117.418<br>184.649                                               | 6<br>-847.086<br>377.842<br>-532.244<br>849.275                                                | 7<br>967.458<br>-437.748<br>626.688<br>-1020 16                                              | 8<br>-1232.45<br>555.168<br>-789.235                                              | 9<br>1557<br>-688.629<br>954.741                                                          | opulate<br>Viewer<br>10 ▲<br>-1707.0<br>756.259<br>-1045.2<br>1690.86                                 |
| <ul> <li>✓ C 2x30</li> <li>✓ D 2x2</li> <li>✓ IC 30x1</li> </ul> | Enter Matrix                                                                                                                                                 | 2 3<br>.3392 -162.362<br>3.2071 71.1535<br>.501 -97.7755<br>0.1538 152.173<br>.8384 -96.6314                                                       | 4<br>287.321<br>-126.621<br>174.649<br>-274.455<br>174.281                                   | 5<br>-192.17<br>84.86<br>-117.418<br>184.648<br>-117.732                                   | 6<br>-847.086<br>377.842<br>-532.244<br>849.275<br>-545.759                                    | 7<br>967.458<br>-437.748<br>626.688<br>-1020.16<br>662.186                                   | 8<br>-1232.45<br>555.168<br>-789.235<br>1290.08<br>-840.011                       | 9<br>1557<br>-688.629<br>954.741<br>-1544.87<br>1001.65                                   | opulate<br>Viewer<br>10 ▲<br>-1707.0<br>756.255<br>-1045.2<br>1690.8€<br>-1095.8                      |
| <ul> <li>✓ C 2x30</li> <li>✓ D 2x2</li> <li>✓ IC 30x1</li> </ul> | Enter Matrix<br>View Matrix<br>1151.735 87<br>2. 65.7112 -33<br>388.5749 51<br>4. 137.854 51<br>587.5385 50<br>6291.907 16                                   | 2 3<br>.3392 -162.362<br>3.2071 71.1535<br>.501 -97.7755<br>0.1538 152.173<br>8.984 -96.6314<br>9.726 -322.228                                     | 4<br>287,321<br>-126,621<br>174,649<br>-274,455<br>174,281<br>581,161                        | 5<br>-192.17<br>84.86<br>-117.418<br>184.648<br>-117.732<br>-392.59                        | 6<br>-847.086<br>377.842<br>-532.244<br>849.275<br>-545.759<br>-1911.15                        | 7<br>967.458<br>-437.748<br>626.688<br>-1020.16<br>662.186<br>2447.89                        | 8<br>-1232.45<br>555.168<br>-789.235<br>1290.08<br>-840.011<br>-3134.83           | 9<br>1557<br>-688.629<br>954.741<br>-1544.87<br>1001.65<br>3645.66                        | opulate<br>Viewer<br>10 ▲<br>-1707.0<br>756.255<br>-1045.2<br>1690.8€<br>-1095.8<br>-3936.5           |
| <ul> <li>✓ C 2x30</li> <li>✓ D 2x2</li> <li>✓ IC 30x1</li> </ul> | Enter Matrix<br>View Matrix<br>1151.735.87<br>265.7112 -33<br>388.5749 51<br>4137.854 -53<br>587.5385 50<br>6291.907 16<br>7239.856 -11                      | 2 3<br>.3392 -162.362<br>3.2071 71.1535<br>.501 -97.7755<br>0.1538 152.173<br>.8984 -96.6314<br>9.726 -322.228<br>39.462 264.771                   | 4<br>287.321<br>-126.621<br>174.649<br>-274.455<br>174.281<br>581.161<br>-477.532            | 5<br>-192.17<br>84.86<br>-117.418<br>184.648<br>-117.732<br>-392.59<br>322.586             | 6<br>-847.086<br>377.842<br>-532.244<br>849.275<br>-545.759<br>-1911.15<br>1652.54             | 7<br>967.458<br>-437.748<br>626.688<br>-1020.16<br>662.186<br>2447.89<br>-2313.95            | 8<br>-1232.45<br>555.168<br>-789.235<br>1290.08<br>-840.011<br>-3134.83<br>3116.9 | 9<br>1557<br>-638.629<br>954.741<br>-1544.87<br>1001.65<br>3645.66<br>-3609.52            | opulate<br>10 ▲<br>-1707.0<br>756.255<br>-1045.2<br>1690.86<br>-3936.5<br>3844.27                     |
| <ul> <li>✓C 2x30</li> <li>✓D 2x2</li> <li>✓IC 30x1</li> </ul>    | Enter Matrix<br>View Matrix<br>1151.735 87<br>2. 65.7112 -33<br>388.5749 51<br>4. 137.854 -87<br>587.5385 50<br>6291.907 16<br>7. 239.856 -11<br>8254.551 14 | 2 3<br>.3392 -162.362<br>3.2071 71.1535<br>.501 -97.7755<br>0.1538 152.173<br>.8984 -96.6314<br>9.726 -322.228<br>39.462 264.771<br>8.006 -280.992 | 4<br>287.321<br>-126.621<br>174.649<br>-274.455<br>174.281<br>581.161<br>-477.532<br>506.788 | 5<br>-192.17<br>84.86<br>-117.418<br>184.648<br>-117.732<br>-392.59<br>322.586<br>-342.349 | 6<br>-847.086<br>377.842<br>-532.244<br>849.275<br>-545.759<br>-1911.15<br>1652.54<br>-1753.78 | 7<br>967.458<br>-437.748<br>626.688<br>-1020.16<br>662.186<br>2447.89<br>-2313.95<br>2561.84 | 8<br>-1232.45<br>555.165<br>1290.08<br>-840.011<br>-3134.83<br>3116.9<br>-3712.54 | 9<br>1557<br>-688.629<br>954.741<br>-1544.87<br>1001.65<br>3645.66<br>-3609.52<br>4533.35 | opulate<br>10<br>-1707.0<br>756.255<br>-1045.2<br>1690.86<br>-1095.8<br>-3936.5<br>3844.27<br>-4854.4 |



#### **Thermal Impedance and Comparison with ANSYS**

- ANSYS: about 300 000 DoFs, Reduced model: 30 DoFs
  - The difference is less than 1%
  - Timing: 60 timesteps is about 30 min in ANSYS





#### **Thermal Runaway**

- Transistor is considered as temperature dependent R<sub>DSon</sub>
  - The VHDL-AMS model



```
LIBRARY IEEE:
USE IEEE.ELECTRICAL_SYSTEMS.ALL;
USE IEEE.THERMAL_SYSTEMS.ALL;
ENTITY RDS_MODEL IS
               QUANTITY RDS1 : RESISTANCE := 0.035;
  PORT (
               QUANTITY t0 : IN TEMPERATURE := 298.0;
               QUANTITY KC1 : REAL := 0.35e-3;
              QUANTITY CTRL: REAL := 0.0:
              TERMINAL th1 : thermal:
              TERMINAL p,m : ELECTRICAL);
END ENTITY RDS_MODEL;
ARCHITECTURE behav OF RDS_MODEL IS
               QUANTITY v ACROSS i THROUGH p TO m;
               QUANTITY t val ACROSS h THROUGH th1 TO thermal ref;
BEGIN
       IF (CTRL <= 0.0) USE
               i == 0.0:
               h == 0.0:
       ELSE
               v == i^{*}(RDS1+KC1^{*}(t val-t0));
               h == -i^*v:
       END USE:
END ARCHITECTURE behav:
```

#### **Transient Turn-on of an Automotive Light-Bulb**





#### **Transient Turn-on of an Automotive Light-Bulb**







# MOR for ANSYS in turbine dynamics

- Felix Lippold / Dr. Björn Hübner
- Voith Hydro Holding

ANSYS Conference & 27. CADFEM Users Meeting, 18 - 20 November 2009, Congress Center Leipzig.



#### Modelling Acoustic-structure coupling

Finite-Element model used in harmonic analysis

- Linear-elastic SOLID elements for runner structure.
- Acoustic FLUID elements for surrounding water.
- Complex load vectors for rotating pressure fields.







#### Modelling Coupled acoustic-structure equations

#### **Equations of motion**

$$\begin{bmatrix} \mathbf{M}_{\mathrm{S}} \\ \mathbf{M}_{\mathrm{SA}} & \mathbf{M}_{\mathrm{A}} \end{bmatrix} \cdot \begin{bmatrix} \ddot{\mathbf{u}} \\ \ddot{\mathbf{p}} \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{\mathrm{S}} \\ \mathbf{E}_{\mathrm{A}} \end{bmatrix} \cdot \begin{bmatrix} \dot{\mathbf{u}} \\ \dot{\mathbf{p}} \end{bmatrix} + \begin{bmatrix} \mathbf{K}_{\mathrm{S}} & \mathbf{K}_{\mathrm{SA}} \\ \mathbf{K}_{\mathrm{A}} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{\mathrm{S}} \\ \mathbf{b}_{\mathrm{A}} \end{bmatrix} \cdot q(t)$$

Formally equivalent to

$$\mathbf{M} \cdot \ddot{\mathbf{x}} + \mathbf{E} \cdot \dot{\mathbf{x}} + \mathbf{K} \cdot \mathbf{x} = \mathbf{b} \cdot q(t)$$

But:

- non-symmetric matrices
- non-proportional damping matrix
- fluid damping E<sub>A</sub> only for impedance boundaries



## Results No damping

#### Axial displacement@centre trailing edge - no damping





#### Results Verification of reduced order method

#### Pressure distribution on runner for f = 40 Hz



#### Hard Disk Drive Actuator/Suspension System

Michael R Hatch, Vibration Simulation Using MATLAB and ANSYS







#### **Model Reduction**

- 3352 elements
- 7344 nodes
- 21227 equation
- 400 frequencies takes about 12 min
- MOR takes only 3 s
- Comparison for head
  - ANSYS
  - MOR 30
  - MOR 80





## Comparison





#### Relative difference (blue modal80 – green MOR80)





#### Information on ModelReduction.com

| Applications of Model Reduc                                  | iction - Windows Interi                       | net Explorer                          |                                          |                           | _                        |          |
|--------------------------------------------------------------|-----------------------------------------------|---------------------------------------|------------------------------------------|---------------------------|--------------------------|----------|
| 🚱 🗸 🖉 http://modelreductio                                   | ▼ <del>•</del> <b>×</b> (                     | Google                                | <b>P</b> -                               |                           |                          |          |
| Datei Bearbeiten Ansicht Favor                               | riten Extras ?                                |                                       |                                          |                           |                          |          |
| 🔆 🔅 🖉 Applications of Model                                  | Reduction                                     |                                       |                                          | 🏠 🕶 🔝 👻 🖷                 | 🝷 📝 Seite 👻 🎯 Extras     | is 🕶 🎽   |
|                                                              |                                               | <i>ModelRe</i>                        | duction.com                              |                           |                          | 4        |
| Discussion group for model red<br>subscribe@googlegroups.com | duction: <u>http://groups.g</u><br><u>1</u> . | <u>google.com/group/mor4ansys</u> . Y | ′ou can subscribe on-line c              | er by sending a dummy e-m | ail to <u>mor4ansys-</u> |          |
| Book Fast Simulation of Electr                               | tro-Thermal MEMS: Ef                          | fficient Dynamic Compact Mode         | els. Book at <u>Amazon</u> or <u>Spr</u> | inger.                    | 1                        |          |
| Home Mode                                                    | el Reduction                                  | Applications                          | Teaching                                 | MOR for ANSYS             |                          |          |
| Apps Home The                                                | ermal Diffusion                               | Structural Piezoelectric              | Electromechanical                        | Thermomechanical          | Acoustics                |          |
| Applications of Model Reduction                              |                                               |                                       |                                          |                           |                          |          |
| are general, that is, this ca                                | an be done for mo                             | dels developed with any so            | oftware.                                 | vorthy of houng that res  | suits by themselves      | <b>5</b> |
| Navigation                                                   |                                               |                                       |                                          |                           |                          |          |



#### Content

- CADFEM
- System level simulation and compact modeling
- Model order reduction
- Case studies with MOR for ANSYS





www.msnbc.msn.com/id/12409082/



# History of solvers in MOR for ANSYS

- MUMPS
  - Fortran 90 Activation barrier
- TAUCS symmetric matrices
- UMFPACK unsymmetric matrices
- 2006 HPC-EUROPA
  - SGI Origin 3800 (teras)
  - Micro-FEM bone models
    - Bert van Rietbergen
- 2007 MUMPS in MOR for ANSYS

| FREELY AVAILABLE SOFTWARE FOR - Windows Internet Explorer          |             |            |      |         |             |   |     |     |      |
|--------------------------------------------------------------------|-------------|------------|------|---------|-------------|---|-----|-----|------|
| > ⊙ ▼   ■ http://www.netlib.org/utk/people/JackDongarra/la-sw.html |             |            |      |         |             |   |     |     |      |
| atei Bearbeiten Ansicht                                            | Favoriten   | Extras ?   |      |         |             |   |     |     |      |
| 🍸 🚓 🔳 🖉 FREELY AVAIL                                               | ABLE SOFTV  | VARE FOR   |      |         |             |   |     |     |      |
| ScaLAPACK                                                          | BSD         | yes        | X    | X       | X           | X |     |     | M/P  |
| Trilinos/Pliris                                                    | LGPL        | yes        | X    | X       |             | X | Χ   |     | Μ    |
| SPARSE                                                             | License     | Support    | Real | Complex | <b>f</b> 77 | с | c++ | Seq | Dist |
| DIRECT                                                             |             |            |      |         |             |   |     |     |      |
| SOLVERS                                                            |             |            |      |         |             |   |     |     |      |
| <u>DSCPACK</u>                                                     | ?           | yes        | Χ    |         |             | Χ |     | Χ   | Μ    |
| HSL                                                                | <u>Own</u>  | yes        | Χ    | Χ       | Χ           |   |     | Χ   |      |
| MFACT                                                              | ?           | yes        | Χ    |         |             | X |     | X   | Μ    |
| MUMPS                                                              | <u>PD</u>   | <u>yes</u> | Χ    | Χ       | Χ           | X |     | X   | Μ    |
| <u>PSPASES</u>                                                     | ?           | yes        | Χ    |         | Χ           | X |     |     | Μ    |
| Quern                                                              | <u>PD</u>   | yes        | Χ    |         |             | X | X   | Χ   |      |
| SPARSE                                                             | ?           | ?          | Χ    | Χ       |             | X |     | Χ   |      |
| SPOOLES                                                            | <u>PD</u>   | ?          | Χ    | Χ       |             | Χ |     | Χ   | Μ    |
| <u>SuperLU</u>                                                     | <u>Own</u>  | yes        | Χ    | X       | Χ           | X |     | Χ   | Μ    |
| TAUCS                                                              | <u>Own</u>  | yes        | Χ    | X       |             | X |     | Χ   |      |
| Trilinos/Amesos                                                    | LGPL        | yes        | Χ    |         |             |   |     | Χ   | Μ    |
| <u>UMFPACK</u>                                                     | LGPL        | yes        | Χ    | X       |             | Χ |     | Χ   |      |
| <u>Y12M</u>                                                        | ?           | <u>yes</u> | Χ    |         | Χ           |   |     | X   |      |
| PRECONDITIONERS                                                    | License     | Support    | Real | Complex | <b>f</b> 77 | с | c++ | Seq | Dist |
| BPKIT                                                              | ?           | yes        | X    |         | X           | X | X   | Χ   | Μ    |
| MLD2P4                                                             | <u>BSD</u>  | yes        | Χ    | Χ       | <b>f90</b>  |   |     | Χ   | Μ    |
| MSPAI                                                              | <u>LGPL</u> | yes        | Χ    | Χ       |             |   | Χ   | Χ   | Μ    |
| PARPRE                                                             | ?           | yes        | Χ    |         |             | Χ |     |     | Μ    |
| SPAI                                                               | ?           | yes        | Χ    |         |             | Χ |     | X   | Μ    |
| Trilions/ML                                                        | LGPL        | yes        | X    | X       |             | X | X   | X   | Μ    |



## **Voith Hydro Timing**

- 2 x quad-core Intel X5560 (Nehalem) with 48 GB under Windows
   Shared memory
- nnz dim K 91627731 1292663 M 31982656 1292663
- 27.7 Gb memory
- Factorization is 287 s
- 250 vectors is 1500 s
  - 6 s pro vector

|                       | nnz      | dim     |
|-----------------------|----------|---------|
| • K                   | 99934728 | 1495341 |
| <ul> <li>M</li> </ul> | 35774706 | 1495341 |

- 20.1 Gb memory
- Factorization is 243 s
- 200 vectors is 1300 s
  - 6.5 s pro vector



# How MUMPS is used in MOR for ANSYS

- Shared memory (serial)
  - No parallel
- Linux and Windows versions (Visual C + Intel Fortran on Windows)
  - Used to have an Altix version
  - Intel MKL BLAS
    - Used to work with ATLAS
- Two versions:
  - 32-bit integers
  - 64-bit integers
- Mostly in-core, sometimes out-of-core
- Symmetric positive definite, symmetric indefinite, unsymmetric matrices



## **Sharing Experience**

- Oberwolfach Model Reduction Benchmark Collection
  - http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
  - Trabecular Bone Micro-Finite Element Models
- http://MatrixProgramming.com
  - Compiling MUMPS under Microsoft Visual Studio and Intel Fortran with GNU Make
  - Sample code in C++ to run MUMPS
- Working with Microsoft Visual Studio
  - Distribution the code with manifests
  - -02 does not turn safe iterators off (\_SECURE\_SCL=0)
  - 32-bit code has some problems with memory fragmentation
    - Using a tree to assemble a matrix



#### Conclusion

- Model Order Reduction is a nice extension for a FEM application
- Model Order Reduction needs a direct solver
- MUMPS plays an important role in MOR

