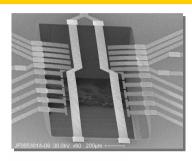
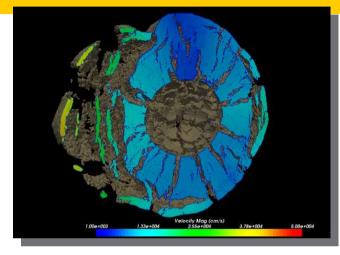


Linear Solver Challenges in Large-Scale Circuit Simulation

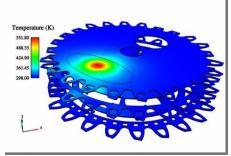
MUMPS User Group Meeting April 16th, 2010

Heidi K. Thornquist

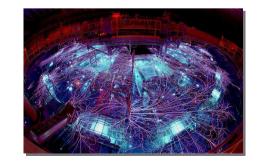

Sandia National Laboratories Albuquerque, NM

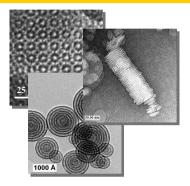


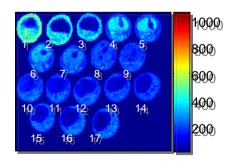
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.


SNL has six core technical capabilities

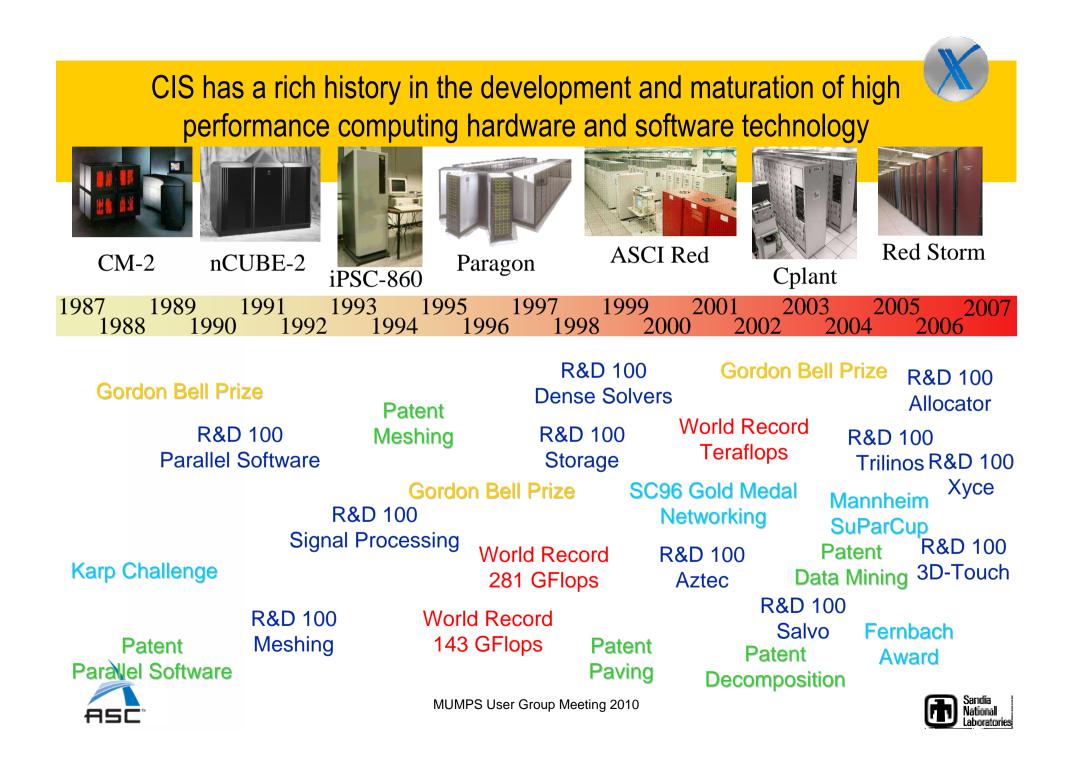
Microelectronics and Photonics


Bare Si; d-grain~0.5um


Engineering Sciences


Computational & Informational Sciences

Pulsed Power



Materials Science & Technology

Bioscience

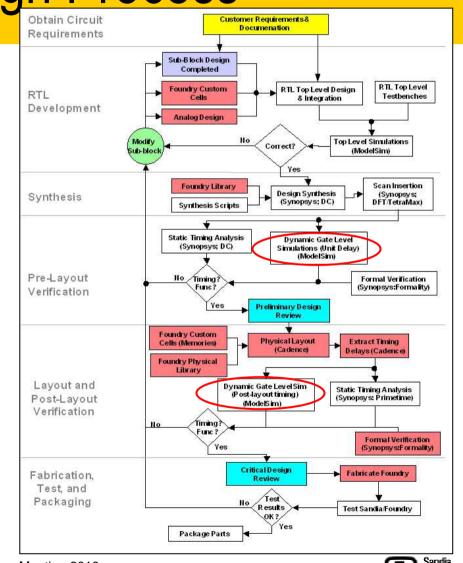
Xyce Motivation

Lack of NW testing:

- Comprehensive Test Ban Treaty (CTBT), 1993
- Advanced Simulation & Computing (ASC), 1995
- Qualification Alternatives to SPR (QASPR), 2005

- - Full system simulation
 - Unique models: Radiation Effects
 - High fidelity: "true SPICE" level or higher
 - Large capacity: Massively-parallel
 - IP: Sandia owns it, source-level access
 - Commercial Tools are expensive

 \$5K-\$1M



Circuit Design Process

- Highly complex
 - Requires different tools for verifying different aspects of the circuit
- Cannot afford many circuit re-spins
 - Expense of redesign
 - Time to market
- Accurate / efficient / robust tools
 - Challenging for 45nm technology

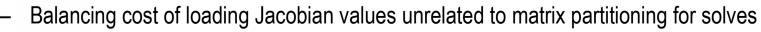
Analog circuit simulator (SPICE compatible)

- Large scale (N>1e7) "flat" circuit simulation
 - solves set of coupled DAEs simultaneously
- Distributed memory parallel
 - threaded device loads
- Advanced solution techniques
 - Homotopy
 - Multi-level Formulation
 - Multi-time Partial Differential Equation (MPDE)
 - Parallel Iterative Matrix Solvers / Preconditioners
- 2008 R&D100 Award

X

- Simulation Challenges
 - Network Connectivity
 - Load Balancing / Partitioning
 - Efficient Parallel Linear Solvers
- Xyce & Trilinos
- Linear Solver Strategies
 - Results

Parallel Circuit Simulation Challenges

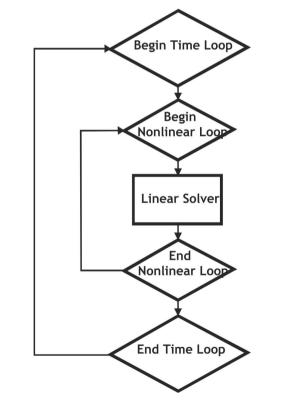

Analog simulation models network(s) of devices coupled via Kirchoff's current and voltage laws

$$f(x(t)) + \frac{dq(x(t))}{dt} = b(t)$$

- Network Connectivity
 - Hierarchical structure rather than spatial topology
 - Densely connected nodes: O(n)
- Badly Scaled DAEs
 - Compact models designed by engineers, not numerical analysts!
 - Steady-state (DCOP) matrices are often ill-conditioned
- Non-Symmetric

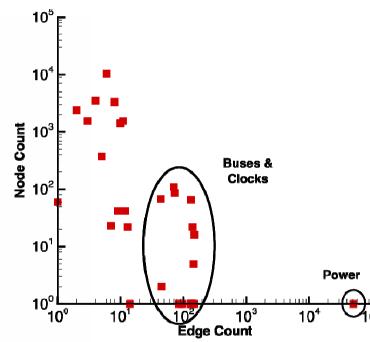
75

- Not elliptic and/or globally SPD
- Load Balancing / Partitioning



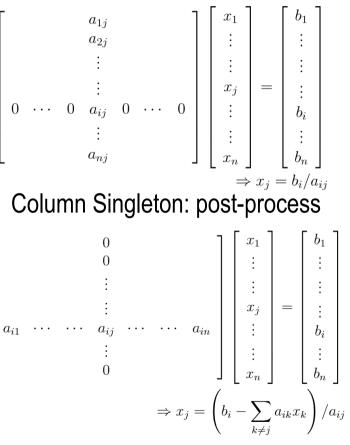
Parallel Circuit Simulation Structure (Transient Simulation)

- Simulation challenges create problems for linear solver
 - Direct solvers more robust
 - Iterative solvers have potential for better scalability
- Iterative solvers have previously been declared unusable for circuit simulation
 - Black box methods **do not** work!
 - Creation of effective preconditioner most important
- Leverage useful structure
 - Static graph
 - Highly connected nodes
 - Unidirectionality
 - Recycling solvers



Network Connectivity

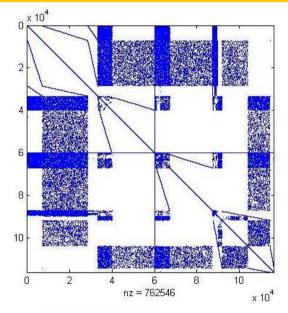
(Singleton Removal)

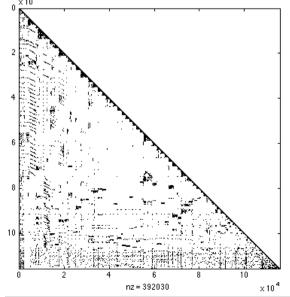


• Connectivity:

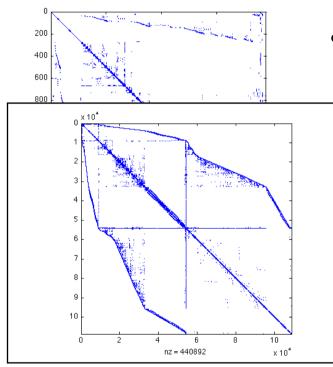
AS

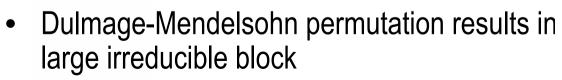
- Most nodes very low connectivity -> sparse matrix
- Power node generates very dense row (~0.9*N)
- Bus lines and clock paths generate order of magnitude increases in bandwidth

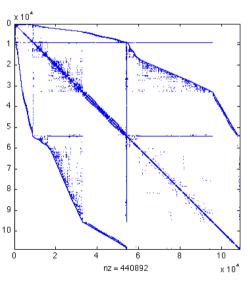




Network Connectivity

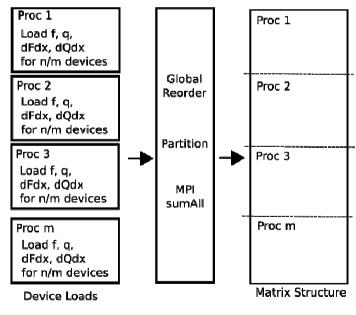

(Hierarchical Structure)


- Heterogeneous Matrix Structure
- Some circuits exhibit *unidirectionality*:
 - Common in CMOS Memory circuits
 - Not present in circuits with feedback (e.g. PLLs)
 - Block Triangular Form (BTF) via Dulmage-Mendelsohn permutation
- BTF benefits both direct and preconditioned iterative methods
- Used by Tim Davis's KLU in Trilinos/AMESOS (The "Clark Kent" of Direct Solvers)



Network Connectivity (Parasitics/PLLs)

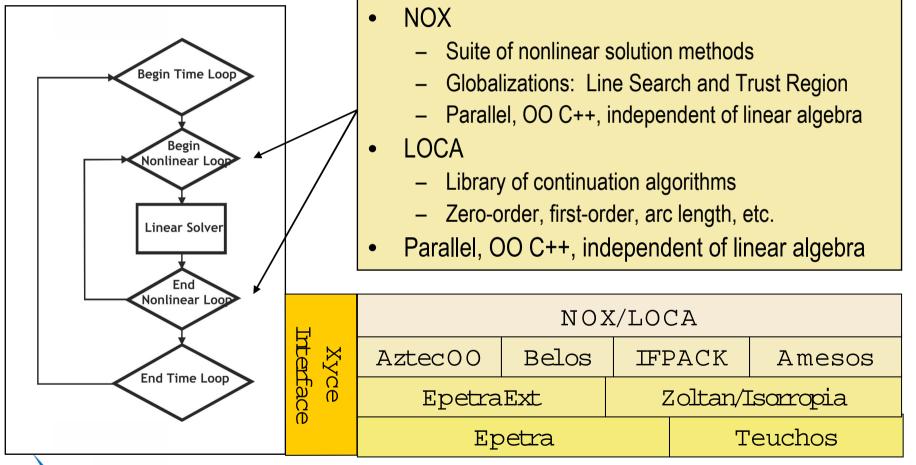
- Other circuits **do not** exhibit *unidirectionality*:
 - Common in phase-locked loops (PLLs)
 - Common in post-layout circuits
 - circuits with parasitics
 - important for design verification
 - often much larger than original circuit



Load Balancing / Partitioning

- Balancing Jacobian loads with matrix partitioning for iterative solvers
 - Use different partitioning for Jacobian loads and solves
 - Simple distribution of devices across processors
- Matrix partitioning more challenging:
 - Graph
 - Assumes symmetric structure
 - Robust software available (ParMETIS, etc.)
 - Hypergraph
 - Works on rectangular, non-symmetric matrices
 - Newer algorithms (Zoltan, etc.)
 - More expensive to compute
 - More accurately measures communication volume

- Trilinos is an evolving framework to support large-scale simulation codes:
 - Fundamental atomic unit is a *package*
 - Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages)
 - Provides a common abstract solver API (Thyra package)
 - Provides a ready-made package infrastructure:
 - Source code management (git, gitk)
 - Build tools (cmake)
 - Automated regression testing (ctest / cdash)
 - Communication tools (mailman mail lists)
 - Specifies requirements and suggested practices to address ASC SQA/SQE requirements
- Trilinos allows the separation of efforts:
 - Efforts best done at the Trilinos level (useful to most or all packages)
 - Efforts best done at a package level (peculiar or important to a package)
 - Allows package developers to focus only on things that are unique to their package

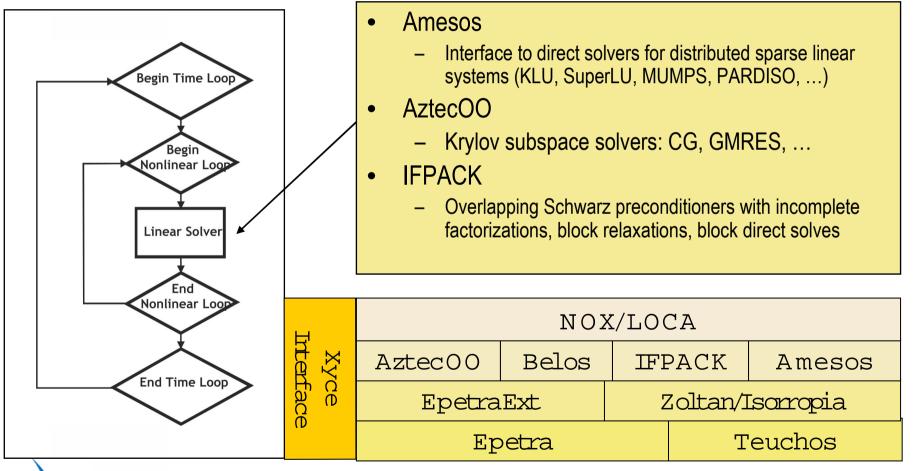

Trilinos Package Summary

	Objective	Package(s)		
Discretizations	Spatial Discretizations (FEM,FV,FD)	Intrepid		
Discretizations	Time Integration	Rythmos		
Mathada	Automatic Differentiation	Sacado		
Methods	Mortar Methods	Moertel		
	Linear algebra objects	Epetra, Jpetra, Tpetra		
	Abstract interfaces	Thyra, Stratimikos, RTOp		
Core	Load Balancing	Zoltan sorropia		
	"Skins"	PyTrilinos, WebTrilinos, Star-P, ForTrilinos		
	C++ utilities, (some) I/O	Teuchos EpetraExt, Kokkos, Triutils		
	Iterative (Krylov) linear solvers	AztecOo Belos, Komplex		
	Direct sparse linear solvers	Amesos		
	Direct dense linear solvers	Epetra, Teuchos, Pliris		
	Iterative eigenvalue solvers	Anasazi		
Solvers	ILU-type preconditioners	AztecOO, IFPACK, TIFPACK		
	Multilevel preconditioners	ML, CLAPS		
	Block preconditioners	Meros		
	Nonlinear system solvers	NOX, DOCA		
	Optimization (SAND)/UMPS User Group Meetin	MOOCHO, Aristos		

X

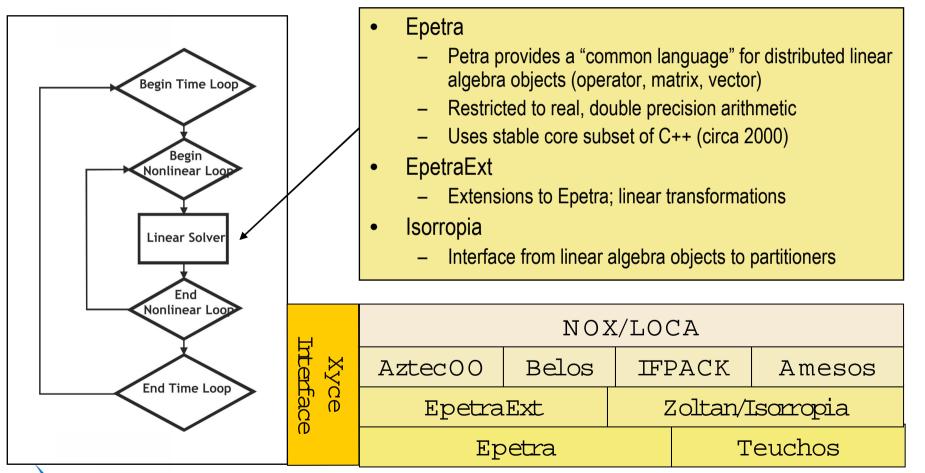
Parallel Circuit Simulation Structure

(Transient Simulation)



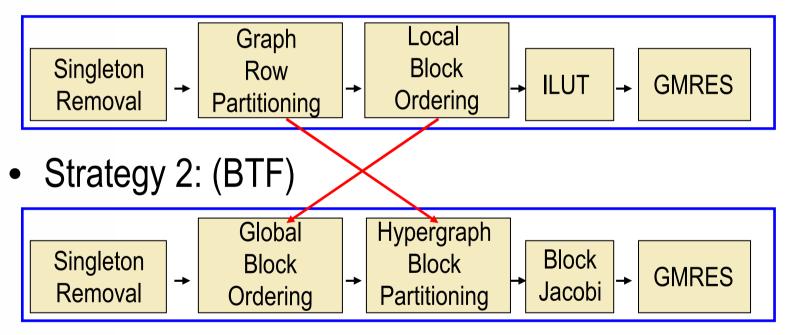
Parallel Circuit Simulation Structure

(Transient Simulation)



Parallel Circuit Simulation Structure

(Transient Simulation)



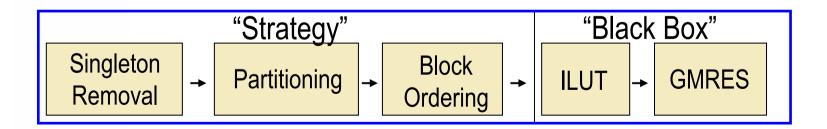
Linear Solver Strategies ~ Iterative and Direct ~

• Strategy 1: (DD)

• Direct Solver Strategies:

ASC

- KLU (serial), SuperLU-Dist (parallel)

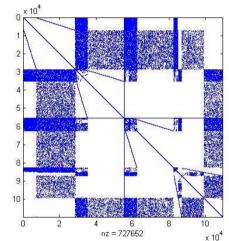


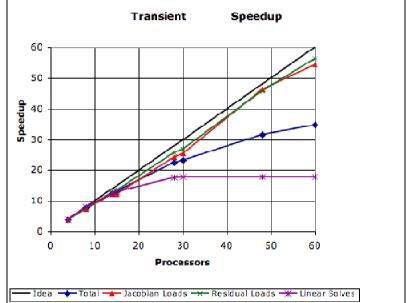
Linear Solver Strategies ~ Strategy 1 ~

• Assertion:

Black box methods won't work!

Strategy	Precond	N	Total Cuts	Condition #	GMRES Iters	Solve Time
Black Box	ILUT	1220	~1000	3.00E+05	500	4.7
Strategy 1	SR+Zoltan+ AMD+ILUT	1054	68	1.00E+04	127	0.43



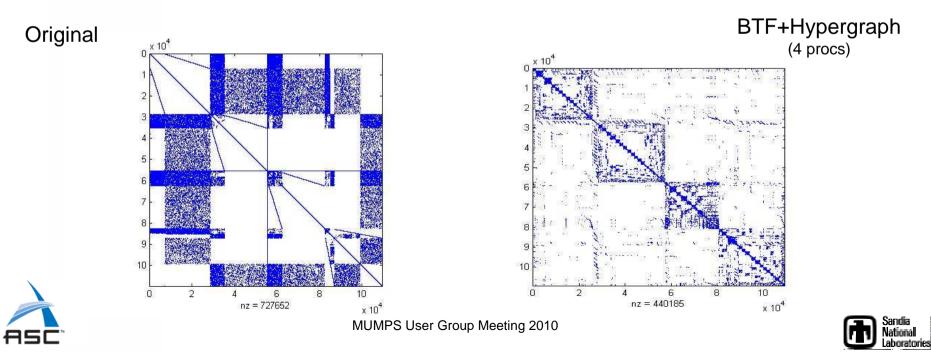

"Strategy 1" Solver Performance

• Assertion:

Solver strategy is problem dependent!

- Ex: 100K transistor IC problem

Strategy	Method	Residual	GMRES Iters	Solve Time
1 (4 procs)	SR+Zoltan+ AMD+ILUT	3.425e-01 (FAIL)	500	302.573



Linear Solver Strategies ~ Strategy 2 ~

Strategy	Method	Residual	GMRES Iters	Solve Time
1	SR+Zoltan+ AMD+ILUT	3.425e-01 (FAIL)	500	302.573
2	SR+BTF+ Hypergraph+KLU	3.473e-10	3	0.139

Test Circuits

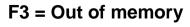
Circuit	Ν	Capacitors	MOSFETs	Resistors	Voltage Sources	Diodes
Ckt1	688838	93	222481	175	75	291761
ckt2	434749	161408	61054	276676	12	49986
Ckt3	116247	52552	69085	76079	137	0
Ckt4	63761	208236	11732	51947	56	0
ckt5	46850	21548	18816	0	21	0
ckt6	32632	156	13880	0	23	0
ckt7	25187	0	71097	0	264	0
ckt8	17788	14274	7454	0	15	0
ckt9	15622	7507	10173	11057	29	0
Ckt10	10217	460	4243	1	23	0

Results - 4 Cores

Circuit	Task	KLU (serial)	SLUD	DD	BTF	Speedup (KLU/BTF)
	Setup	131	56	F2	57	2.3x
aluta	Load	741	568	F2	562	1.3x
ckt3	Solve	6699	2230	F2	255	26.2x
	Total	7983	2903	F2	923	8.6x
	Setup	552	58	F2	F1	-
ol/t4	Load	153	44	F2	F1	-
ckt4	Solve	106	157	F2	F1	-
	Total	840	274	F2	F1	-
ckt10	Setup	3	6	1	F1	-
	Load	606	300	339	F1	-
	Solve	323	3049	2460	F1	-
	Total	989	3381	2827	F1	-

F1 = BTF large irreducible block

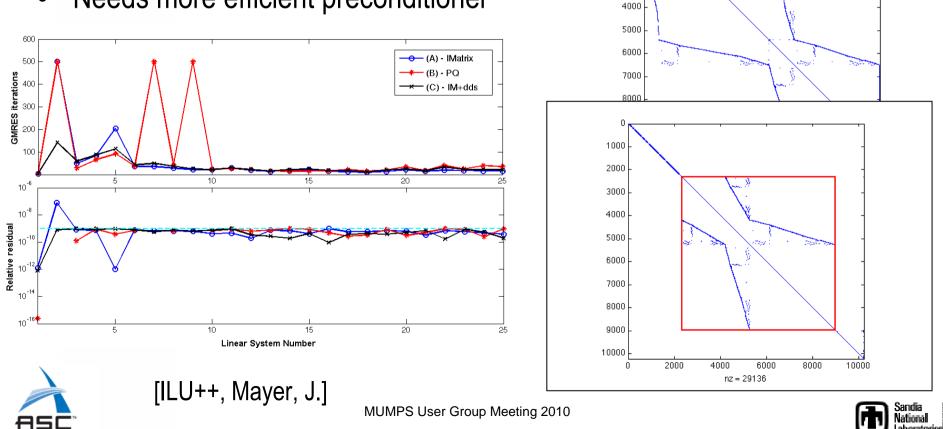
F2 = Newton convergence failure_{MPS User Group Meeting 2010}


Results - 16 Cores

Circuit	Task	KLU (serial)	SLUD	DD	BTF	Speedup (KLU/BTF)
	Setup	2396	F3	207	199	12.0x
ckt1	Load	2063	F3	194	180	11.4x
CKLI	Solve	1674	F3	3573	310	5.4x
	Total	6308	F3	4001	717	8.8x
	Setup	131	29	F2	29	4.5x
ckt3	Load	741	181	F2	175	4.2x
CKIS	Solve	6699	1271	F2	84	79.8x
	Total	7983	1470	F2	306	26.1x
ckt4	Setup	552	32	F2	F1	-
	Load	153	21	F2	F1	-
	Solve	106	133	F2	F1	-
	Total	840	192	F2	F1	-

F1 = BTF large nonreducible block

F2 = Newton convergence failung IPS User Group Meeting 2010


Preconditioning Directions: Multilevel ILU

1000

2000 3000

Laboratories

- ckt10 : CircuitSim90 Voter circuit
- Needs more efficient preconditioner •

Other Solver Strategies

- The SPICE industry standard is Markowitz ordering
 - BTF structure is known but not highly regarded
- Preconditioned iterative methods presented before
 - C. W. Bomhof and H.A. van der Vorst [NLAA, 2000]
 - Requires doubly bordered block diagonal matrix partition
 - A. Basermann, U. Jaekel, and K. Hachiya [SIAM LA 2003 proc.]
 - Requires ParMETIS to give good initial ordering
 - H. Peng and C.K. Cheng [DATE 2009 proc.]
 - Domain decomposition approach, requires knowledge of device boundaries

Paraklete: parallel KLU [in the works, Tim Davis]

Conclusions

- Iterative linear solvers can enable scalable circuit simulation
 - Dependent upon choosing correct preconditioning strategy
- BTF preconditioning strategy has been successful
 - Great for CMOS memory circuits (ckt3)
 - Performs better than standard strategy on Xyce 680k ASIC (ckt1)
- But it is still not a silver bullet ...
 - Circuits with feedback (PLLs) are more challenging (ckt4)
- Multilevel techniques are a positive research direction
 - Can help to more efficiently precondition some circuits with large irreducible blocks (ckt10)

Questions?

- Xyce
 - http://xyce.sandia.gov
- Trilinos
 - http://trilinos.sandia.gov
 - Trilinos User Group (TUG) Meeting 2010

