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Problem setting

Within a sparse multifrontal code

Estimate the deficiency d of the singular matrix A and compute a
null space basis Z ∈ Cn×d such that A Z = 0n×d where
A ∈ Cn×n is a large sparse singular matrix.

Properties of the null space detection

Reliable for sparse matrices with small to high deficiency
Efficient also possibly in a parallel distributed memory
environment

Analysis of the solution phase (not discussed today)

Exploit the sparsity of the multiple right-hand side problems in an
out-of-core framework (addressed in Slavova’s PhD thesis [2009,
Section 11.2])

4/42 Null space computation of sparse singular matrices with MUMPS



Outline

1 Problem setting and motivations
Problem setting
Motivations
Related references

2 Proposed algorithm
Main governing idea
Proposed numerical pivoting strategy
Rank-revealing algorithms applied to the root matrix M
Computation of a basis of the nullspace
Sketch of the algorithm and use in MUMPS

3 Numerical experiments
Overview and goals
Electromagnetism applications
Structural mechanics applications

4 Conclusions

5/42 Null space computation of sparse singular matrices with MUMPS



Motivations

Increased interest when designing advanced iterative methods

Solution methods for saddle point problems [Benzi et al., 2005,
Section 6]
Constrained optimization
Domain decomposition solvers (singular problems at the
subdomain level) [Toselli et al., 2004]

Increased interest in real-life applications

Electromagnetics (constrained eigenvalue solvers)
Fluid and/or structural mechanics (null space of discrete
operators)

Some recent related software for sparse rank-deficient matrices

LUSOL [http://www.stanford.edu/group/SOL/software/lusol.html]
spnrank [http://www.math.sjsu.edu/singular/matrices/software/]
SuiteSparseQR [http://www.cise.ufl.edu/research/sparse/SPQR/]
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Related references (of course incomplete !)

Sparse rank-revealing LU or orthogonal decompositions

Sparse multifrontal rank-revealing QR factorization [Pierce and
Lewis, 1997]
Sparse LU with null pivot detection [Farhat and Géradin, 1998]
Sparse symmetric rank-revealing decompositions VSV T

[Bratland and Frimodt, 2002]
Sparse rank-revealing LU based on threshold rook pivoting or
threshold complete pivoting [Gill et al, 2005, Sections 4 and 5]
Sparse LU method with inverse power method to compute the
null space of the triangular factor [Gotsman and Toledo, 2008]

Limitations that were found
Orthogonal methods lead to usually severe fill-in for sparse
problems
Limited problem size
No parallel implementation
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Main governing idea

Determination of the null space of the singular upper triangular factor

Analysis phase: consider the preprocessed matrix Ã = PsAPcPT
s

where Ps corresponds to a permutation that aims at minimizing
the fill-in during factorization and Pc is a column permutation to
obtain a zero-free diagonal.
Derive null space informations by inspecting only U ∈ Cn×n, the
singular upper triangular factor obtained after numerical
factorization of the preprocessed matrix Ã = LU
Factorization phase: determine accurately the deficiency of U
noted d and the matrix ZU ∈ Cn×d defined as

U ZU = 0n×d .

A basis of the subspace spanned by the columns of ZU will
represent the right nullspace of U.
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Proposed numerical pivoting strategy

Threshold partial pivoting in the non singular case

At the j-th step of the Gaussian elimination the set of eligible
pivots Sep is usually defined as:

Sep = {q | |FSV (q, j)| ≥ u max
i
|FSV (i , j)|}

where FSV is the block corresponding to the fully summed
variables of the frontal matrix [Duff and Reid, 84] and u ∈ R a
threshold between 0 and 1 that balances sparsity and numerical
stability.
Among the set of eligible pivots one preserving sparsity is usually
selected to minimize the fill-in. We will denote p this pivot and
define the set of tentative pivot Stp = {p}
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Numerical pivoting strategy in the singular case

First set: set of null pivot rows

Snr = {i | ‖FSV (i , :)‖2 ≤ τA}
τA is a positive real-valued threshold parameter such as τA = v ε
with 1 ≤ v ≤ 1000 and ε the machine precision
Snr allows to detect the so called null pivot rows

Goal of the first set
Those rows are modified to continue the factorization; nonzero
elements are replaced by zero and the diagonal element is set to
a certain fixation value.
This modification is of course an arbitrary decision that will define
one particular solution of the singular system of equations.
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Numerical pivoting strategy in the singular case

Second set: set of delayed pivots

Sdp = {p ∈ Stp | |p| ≤ τB‖Ã‖∞}
τB is a positive real-valued threshold parameter
Sdp consists of the set of delayed pivots.

Goal of the second set
The corresponding fully summed variables are not eliminated
because of numerical issues.
They are instead included in the Schur complement matrix of the
frontal matrix and their elimination is postponed to the parent
node or latter - potentially up to the root of the elimination tree.
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Numerical pivoting strategy in the singular case

Summary: modified numerical pivoting strategy

The modified numerical pivoting strategy leads to

P Ã = L U = L
(

U11 U12
0m×(n−m) M

)
P is a permutation matrix of order n that corresponds to the
considered modified pivoting strategy

U11 ∈ C(n−m)×(n−m) is non singular
The root matrix M ∈ Cm×m is the contribution block related to the
delayed pivots that have been postponed up to the root of the
elimination tree.
The next step is to analyse the deficiency of the root matrix M.
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Rank-revealing algorithms applied to the root matrix M

Root matrix M

Depending on τB, M ∈ Cm×m can be less sparse than Ã and is of
reduced size (m << n)

Truncated rank-revealing method

Truncated QR factorization with column permutation [Foster and
Kommu, 2006]

MΠ = QR = Q
(

R11 R12
0(m−k)×k 0(m−k)×(m−k)

)
.

k, the order of R11 ∈ Ck×k , is the effective rank of M
Its cost is 4m2k − 2k2m − 2

3 k3 [Foster and Kommu, 2006]

If M is a low rank matrix, this cost is thus of order O(m2k) which
is significantly less than the cost required by a SVD factorization
(O(m3)).
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Computation of a basis of the null space [I]

Null space related to the delayed pivots ZRR ∈ Cn×(m−k)

Determination of the null space of U

P Ã = L U = L
(

U11 U12
0m×(n−m) M

)
Null space of the root matrix ZM ∈ Cm×(m−k)

M Π

(
R−1

11 R12
−Im−k

)
= 0m×(m−k) i .e. ZM = Π

(
R−1

11 R12
−Im−k

)
Null space related to the delayed pivots ZRR ∈ Cn×(m−k)

(
U11 U12
0m×(n−m) M

) (
−U−1

11 U12ZM
ZM

)
= 0n×(m−k)
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Computation of a basis of the null space [II]

Null space related to the null pivot rows ZNP ∈ Cn×l

Computation of ZNP according to the row modifications made
during the factorization phase(

U11 U12
0m×(n−m) M

)
ZNP =

(
E(n−m)×l

0m×l

)
where the columns of E(n−m)×l are the i-th Cartesian basis
vector of R(n−m) where i ∈ Snr .
One of the possible solutions has thus the following simple form

ZNP =

(
U−1

11 E(n−m)×l
0m×l

)
which requires the solution of a sparse upper triangular system
with sparse multiple right-hand sides [Slavova, 2009].
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Computation of a basis of the null space [III]

Null space of the preprocessed matrix Ã

Part [I]: null space related to the delayed pivots ZRR ∈ Cn×(m−k)

Part [II]: null space related to the null pivot rows ZNP ∈ Cn×l

The null space of U is thus ZU = [ZNP ZRR]

Null space of the original matrix A

Since Ã = PsAPcPT
s , Z = PcPT

s ZU is such that A Z = 0n×d

The deficiency of A is equal to d = l + m − k
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Sketch of the algorithm

Sketch of the algorithm

Analysis phase Ã = PsAPcPT
s

Detection of null pivot rows and delay of pivots during the
factorization of Ã. At the end the following decomposition is
obtained

P Ã = L U = L
(

U11 U12
0m×(n−m) M

)
where U11 ∈ C(n−m)×(n−m) is nonsingular, U12 ∈ C(n−m)×m and
M ∈ Cm×m.
A l-dimensional set of row indices noted Snr corresponding to
null pivot rows has been determined
M refers to the contribution block gathering pivots that have been
delayed up to the root of the elimination tree.
Null space computation Z = PcPT

s [ZNP ZRR].
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Use in MUMPS [I]

Control parameters related to Snr = {i | ‖FSV (i , :)‖2 ≤ τA}
ICNTL(24) = 1: detection of null pivots
CNTL(3) τA threshold for null pivot rows detection
τA = CNTL(3) if CNTL(3) > 0
τA = ε× 10−5 × ‖A‖ if CNTL(3) ≤ 0

Control parameters related to Sdp = {p ∈ Stp | |p| ≤ τB‖Ã‖∞}
ICNTL(16) = 1: postpone delayed pivots to root node
CNTL(6): τB threshold for postponing pivots
τB = CNTL(6) if CNTL(6) > 0
τB = ε if CNTL(6) ≤ 0
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Use in MUMPS [II]

Output related to null space

INFOG(28): estimated deficiency
ICNTL(25)=-1 computes the complete null space basis
ICNTL(25)=i, where 1 ≤ i ≤ INFOG(28) returns the i-th vector of
the null space basis
PIVNUL LIST list of row indices corresponding to null pivots

Features
Implementation available in [s,d,c,z] arithmetics
Detection of null pivots available in parallel [official release]
Compatible with OOC version
Interface to both MATLAB and Scilab
Root node processed serially [restricted release]
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Numerical results: focus on real-life applications

ANR Benchmark matrices
Concrete applications in structural mechanics [EDF]
Real and symmetric semi-definite matrices
Double precision arithmetics

Goals
Reliability: can the null space detection fail ?
Accuracy of the null space basis Z = [Z1 Z2 · · · Zd ] of the original
matrix A
Error analysis [componentwise scaled residuals and normwise
backward error for each null space vector Zi ]

Nullspace normwise backward error = max
1≤i≤d

‖A Zi‖∞
‖A‖∞ ‖Zi‖∞
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Numerical results with MUMPS

Available strategies

ICNTL(24) = 1 only
ICNTL(24) = 1 and ICNTL(16) = 1

Control parameters

Threshold for numerical pivoting CNTL(1)=10−2

Threshold for null pivots detection CNTL(3)=10−9

Fixation for null pivots CNTL(5)=106

Threshold for postponing pivots CNTL(6)=10−4
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Benchmark ”Box cavities” matrices

PDE problem based on Maxwell’s equations [Geus, 2002]

Computation of resonance modes in closed cavities
Use of Nédélec vector finite elements
Indefinite eigenvalue problems with constraints

Ax = λ Mx
Cx = Y T Mx = 0

where A ∈ Rn×n is symmetric positive semi-definite
[discretization of curl curl operators], M ∈ Rn×n symmetric
positive definite
AY = 0, Y is generally known [curl∇ = 0]
Goal A: investigate the influence of the ordering on the null
space computation
Goal B: compute the null space Z and compare with Y
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Box cavities [0., 5.2]× [0., 3.3]× [0., 0.77]

Goal A: Influence of the ordering on the rank detection of
Ã = PsAPcPT

s

Box 8 5 3 ∈ R619×619 of deficiency 56
Single: ICNTL(24) = 1
Combined: ICNTL(24) = 1 and ICNTL(16) = 1

Single Combined

Ordering Def. Null piv. r. Root size Root def. Def.

AMD 56 36 73 20 56

AMF 56 49 27 7 56

PORD 56 49 38 7 56

METIS 56 41 68 15 56

QAMD 56 36 73 20 56

Correct estimation of the deficiency independently of the ordering strategy
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Box cavities [0., 5.2]× [0., 3.3]× [0., 0.77]

Goal A: Influence of the ordering on the rank detection of
Ã = PsAPcPT

s

Box 30 20 4 ∈ R14454×14454 of deficiency 1653
Single: ICNTL(24) = 1
Combined: ICNTL(24) = 1 and ICNTL(16) = 1

Single Combined

Ordering Def. Null piv. r. Root size Root def. Def.

AMD 1653 1515 470 138 1653

AMF 1653 1617 114 36 1653

PORD 1653 1604 178 49 1653

METIS 1653 1563 337 90 1653

QAMD 1653 1515 470 138 1653

Correct estimation of the deficiency independently of the ordering strategy
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Box cavities [0., 5.2]× [0., 3.3]× [0., 0.77]

Box cavities [0.,5.2]× [0.,3.3]× [0.,0.77]

Matrix Size Def. Null piv. r. Root size Root def. Def.

Box 8 5 3 619 56 49 27 7 56

Box 16 10 3 2675 270 260 31 10 270

Box 20 13 3 4419 456 446 31 10 456

Box 30 20 4 14454 1653 1563 337 90 1653

Box 40 27 5 33627 4056 3876 649 180 4056

Box 50 34 6 64878 8085 7794 1012 291 8085

Box 60 41 7 111147 14160 13812 1185 348 14160

Correct estimation of the deficiency on all matrices with
automatic choice of the ordering made during analysis
Benchmark matrices used in Slavova’s PhD [2009]
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Box cavities [0., 5.2]× [0., 3.3]× [0., 0.77]

Goal B: Null space basis

Computation of the null space Z and compare with the true null
space Y
Distance between subspaces sin(Θ(Y ,Z )) = ‖Y Y T − Z Z T‖2

Θ(Y ,Z ) small means that the two spaces are nearly linearly
dependent

Matrix Null space basis
Name Size Def. Θ(Y ,Z ) Nz(Y) Nz(Z)

Box 8 5 3 619 56 3.75e-11 784 18074

Box 16 10 3 2675 270 8.30e-11 3780 268174

Box 20 13 3 4419 456 3.94e-10 6384 597464
Accurate computation of the null space on this benchmark
problem
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Applications provided by EDF - ANR SOLSTICE
project (2007-2010)

Structural mechanics
FETI domain decomposition algorithm [Farhat and Roux, 1991]
implemented in Code Aster
Subdomain matrices A(i) are singular on some subdomains
A(i) are real symmetric positive semidefinite matrices
The exact deficiency of A(i) is known due to structural mechanics
arguments: it is equal to 6 in the two cases
The computation of the null space of A(i) is required inside the
FETI algorithm

Linear elasticity test cases provided by O. Boiteau [EDF]

Realistic problems on complicated three-dimensional geometries
Fixed partition in 10 subdomains for the two test cases [METIS]
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Pump test case (linear elasticity)

• Tetrahedral mesh (261 520 nodes)

• Global problem has 803 352 degrees of freedom

37/42 Null space computation of sparse singular matrices with MUMPS



Pump test case (linear elasticity)

Matrix MUMPS
Size Nz Def. Def. Back. error

84018 2911020 6 6 0.512e-15

65646 2584782 6 6 0.758e-15

83196 2895633 6 6 0.886e-15

83373 2902116 6 6 0.659e-15

84165 2911854 6 6 0.576e-15

82434 2883390 6 6 0.151e-15

75450 2757588 6 6 0.287e-15

81138 2856795 6 6 0.404e-15
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Carter test case (linear elasticity)

• Tetrahedral mesh (179 463 nodes)

• Global problem has 530 121 degrees of freedom
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Carter test case (linear elasticity)

Matrix MUMPS
Size Nz Def. Def. Back. error

53364 930849 6 6 2.05e-15

53316 930546 6 6 0.493e-15

52647 918957 6 6 0.744e-15

55866 965553 6 6 0.484e-15

53622 935802 6 6 0.410e-15

53403 932916 6 6 0.573e-15

54003 939255 6 6 0.328e-15

53361 931959 6 6 0.425e-15

53712 938718 6 6 0.492e-15
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Summary on the numerical results

On these sets of benchmark matrices...
Reliable (deficiency correctly detected)
Accurate (backward error close to machine precision)
Efficient for low and high deficiency

...but can fail !

On rank-deficient matrices with no large gap in the ratio sk/sk+1
if k is the numerical rank of the matrix and sk the k -th singular
value
This requires to combine (block) iterative methods with the
proposed null space detection algorithm [Master thesis of
Bonnement, 2008]
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Conclusions

Null space detection in MUMPS

Experimental option for rank detection and computation of the
null space basis (already early developments in 1998)
Detection of null pivots during numerical factorization
Delay of small pivots to the root matrix

Singular benchmark matrices

Singular Matrix Database (references, codes and matrices)
[http://www.math.sjsu.edu/singular/matrices/]
ANR SOLSTICE test matrices in TLSE [about 70 singular sparse
matrices, http://www.gridtlse.org/]

This work was partially supported by ”Agence Nationale de
la Recherche”, through SOLSTICE project ANR-06-CIS6-010
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