Computation of a matrix inverse in MUMPS

François-Henry Rouet and Bora Uçar,

In collaboration with: P. R. Amestoy, I. S. Duff and Y. Robert.

Toulouse, April 16th, 2010

Problem definition

Given a large sparse matrix A, compute the entries in the diagonal of A^{-1} .

Motivation/applications

- Linear least-squares solutions: Variance of the variables is at the diagonal of the inverse of a large sparse matrix.
- Quantum-scale device simulation: The use of Green's function reduces the problem to computing the diagonal entries of the inverse of a large sparse matrix.
- Various other simulations: computation of short-circuit currents, approximation of condition numbers.

How to compute the entries of the inverse?

Computing a set of entries in A^{-1} involves the solution of a set of linear systems. For each requested diagonal entry, we solve

$$a_{ii}^{-1} = e_i^T \mathbf{A}^{-1} e_i \; .$$

An efficient algorithm has to take advantage of the sparsity of A and the canonical vectors e_i .

- In numerical linear algebra, one never computes the inverse of a matrix.
- The above equation can be solved with Gaussian elimination, a.k.a., LU decomposition: Assume we have LU = A, then

$$\begin{cases} x = \mathsf{L}^{-1} e_i & \triangleright \text{ solve for } x \\ y = \mathsf{U}^{-1} x & \triangleright \text{ solve for } y \\ a_{ii}^{-1} = e_i^T y & \triangleright \text{ get the } i \text{ th component} \end{cases}$$

4/28

A common variant of LU decomposition Has n-1 steps; at step $k = 1, 2, \ldots, n-1$, the formulae $a_{ii}^{(k+1)} \leftarrow a_{ii}^{(k)} - \left(a_{ik}^{(k)}/a_{kk}^{(k)}\right)a_{ki}^{(k)}, \text{ for } i, j > k$ are used to create zeros below the diagonal entry in column k. Each updated entry $a_{ii}^{(k+1)}$ overwrites $a_{ii}^{(k)}$, and the multipliers $l_{ik} = a_{ik}^{(k)} / a_{kk}^{(k)}$ may overwrite $a_{ik}^{(k)}$.

The process results in a unit lower triangular matrix L and an upper triangular matrix U such that A = LU.

Fill-in occurs: some zeros in $A^{(k)}$ become nonzero in $A^{(k+1)}$.

Sparse LU decomposition: filled-in matrix

Sparse LU decomposition: the graphs

Sparse LU decomposition: the elimination tree

The elimination tree

The elimination tree is a spanning tree of the graph of L + U.

Node *i* is the father of node *j* if $l_{ij} \neq 0$ and *i* is the smallest such index.

[The graph of $\mathbf{L} + \mathbf{U}]$

The elimination tree: what to do with it?

[Elimination tree redrawn]

$$l_{11}x_1 = 0 \Rightarrow x_1 = 0$$
$$l_{22}x_2 = 0 \Rightarrow x_2 = 0$$

$$I_{41}\mathbf{x}_1 + I_{44}\mathbf{x}_4 = 0 \Rightarrow \mathbf{x}_4 = 0$$

The elimination tree: what to do with it?

[Elimination tree redrawn]

$$l_{32}x_2 + l_{33}x_3 \neq 0 \Rightarrow x_3 \neq 0$$

...+ $l_{53}x_3 + l_{55}x_5 = 0 \Rightarrow x_5 \neq 0$
 $l_{63}x_3 + l_{65}x_5 + l_{66}x_6 = 0 \Rightarrow x_6 \neq 0$

The elimination tree: what to do with it?

[Elimination tree redrawn]

$$l_{32}x_2 + l_{33}x_3 \neq 0 \Rightarrow x_3 \neq 0$$
$$\dots + l_{53}x_3 + l_{55}x_5 = 0 \Rightarrow x_5 \neq 0$$
$$_{63}x_3 + l_{65}x_5 + l_{66}x_6 = 0 \Rightarrow x_6 \neq 0$$

Visit the nodes of the tree starting from node 3 to the root; they will be the nonzero entries of x; solve the associated equations.

Entries of the inverse: Back to the equations

To find a_{ii}^{-1} , solve the equations

$$\begin{cases} x = \mathsf{L}^{-1} e_i & \triangleright \text{ solve for } x \\ y = \mathsf{U}^{-1} x & \triangleright \text{ solve for } y \\ a_{ii}^{-1} = e_i^T y & \triangleright \text{ get the } i \text{ th component} \end{cases}$$

Assume we are looking for a_{33}^{-1} . We have seen how we solve for x.

Solve Uy = x until we get the 3rd entry.

We need to solve: $u_{33}y_3 + u_{35}y_5 + u_{36}y_6 = x_3$ So we need y_5, y_6

9/28

Entries of the inverse: Back to the equations

To find a_{ii}^{-1} , solve the equations

$$\begin{cases} x = \mathsf{L}^{-1} e_i & \triangleright \text{ solve for } x \\ y = \mathsf{U}^{-1} x & \triangleright \text{ solve for } y \\ a_{ii}^{-1} = e_i^T y & \triangleright \text{ get the } i \text{ th component} \end{cases}$$

Assume we are looking for a_{33}^{-1} . We have seen how we solve for x.

Solve Uy = x until we get the 3rd entry.

We need to solve: $u_{33}y_3 + u_{35}y_5 + u_{36}y_6 = x_3$ So we need y_5, y_6 $u_{55}y_5 + u_{56}y_6 = x_5$ $u_{66}y_6 = x_6$ Forget the other vars/eqns

Entries of the inverse: a single one

To find a_{ii}^{-1} , solve the equations

$$\begin{cases} x = \mathsf{L}^{-1} e_i & \triangleright \text{ solve for } x \\ y = \mathsf{U}^{-1} x & \triangleright \text{ solve for } y \\ a_{ii}^{-1} = e_i^T y & \triangleright \text{ get the } i\text{ th entry} \end{cases}$$

$$l_{33}x_3 = 1$$

$$|_{63}X_3 + |_{65}X_5 + |_{66}X_6 = 0$$

$$u_{33}y_3 + u_{35}y_5 + u_{36}y_6 = x_3$$

$$u_{55}y_5 + u_{56}y_6 = x_5$$

 $u_{66}y_6 = x_6$

Forget the other vars/eqns

 $x = L^{-1}e_3$, visit the nodes of the tree starting from node 3 to the root; solve the equations associated with L.

 $a_{33}^{-1} = (U^{-1}x)_3$, visit the nodes of the tree starting from the root to node 3; solve the equations associated with U.

François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

10/28

Entries of the inverse: a single one

To find
$$a_{ii}^{-1}$$
, solve the equations

$$\begin{cases} x = \mathsf{L}^{-1} e_i \quad \triangleright \text{ solve for } x \\ y = \mathsf{U}^{-1} x \quad \triangleright \text{ solve for } y \\ a_{ii}^{-1} = e_i^T y \quad \triangleright \text{ get the } i \text{th entry} \end{cases}$$

Use the elimination tree

For each requested (diagonal) entry a_{ii}^{-1} ,

- visit the nodes of the elimination tree from the node *i* to the root: at each node access necessary parts of L,
- visit the nodes from the root to the node *i* again; this time access necessary parts of U.

Entries of the inverse: a single one

Notation for later use

P(i): denotes the nodes in the unique path from the node i to the root node r (including i and r).

P(S): denotes $\bigcup_{s \in S} P(s)$ for a set of nodes S.

Use the elimination tree

For each requested (diagonal) entry a_{ii}^{-1} ,

 visit the nodes of the elimination tree from the node *i* to the root: at each node access necessary parts of L,

Experiments: interest of exploiting sparsity

Implementation

These ideas have been implemented in MUMPS during Tz. Slavova's $\mathsf{PhD}.$

Experiments: computation of the diagonal of the inverse of matrices from data fitting in Astrophysics (CESR, Toulouse)

Matrix	Time (s)	
size	No ES	ES
46,799	6,944	472
72,358	27,728	408
148,286	>24h	1,391

Interest

Exploiting sparsity of the right-hand sides reduces the number of accesses to the factors (in-core: number of flops, out-of-core: accesses to hard disks).

Same as Before...

For each requested (diagonal) entry a_{ii}^{-1} ,

- visit the nodes in P(i): at each node access necessary parts of L,
- visit the nodes in P(i) again (in reverse order); this time access necessary parts of U.

... Only this time

- a block-wise solve is necessary,
- we access parts of L for all the solves in the upward traversal of the tree only once,
- we access parts of U for all the solves in the downward traversal of the tree only once.

[The requested entries in the diagonal of the inverse are shown in red]

$\frac{\text{Requested}}{\begin{array}{c} a_{3,3}^{-1} \\ a_{4,4}^{-1} \\ a_{13,13}^{-1} \end{array}}$	$\begin{array}{c} \text{accesses} \\ \{3,7,14\} \\ \{4,6,7,14\} \\ \{13,14\} \end{array}$	If we were to compute all these four entries, we just need to access the data associated with the nodes in
$a_{13,13}^{-1}$ $a_{14,14}^{-1}$	$\{13, 14\}$ $\{14\}$	red and blue.

François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

14/28

In reality (or in a particular setting)...

Matrices are factored, e.g., the LU-decomposition is computed, in a coarser scheme, and the factors are represented as a (sparse) collection of dense (much) smaller submatrices.

Those submatrices are stored on disks (*out-of-core* setting).

When we access a part of L (or U), we load the associated dense submatrix from the disk; at node *i* of the tree the cost of the load is proportional to w(i): the weight of the node.

Cost

Given a set of requested entries S, we visit all the nodes in P(S), and the total cost is $Cost(S) = \sum_{i \in P(S)} w(i)$.

Assuming we can hold S many solution vectors in memory, this is the absolute minimum we can do for a given set S of requested entries. 15/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

[The requested entries S in the diagonal of the inverse are in red.]

Requested	accesses	If we compute all at the same time,
$a_{3,3}^{-1}$	$\{3, 7, 14\}$ $\{4, 6, 7, 14\}$	we need to access the data asso- ciated with the nodes in $P(S) =$
$a_{13,13}^{-1}$	{13,14}	{3, 4, 6, 7, 13, 14} shown in red and
$a_{14,14}^{-1}$	{14}	blue.

$$Cost(S) = \sum_{i \in P(S)} w(i) = w(3) + w(4) + w(6) + w(7) + w(13) + w(14)$$
28
François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

16/

In reality (or in a particular setting)...

We are to compute a set R of requested entries. Usually |R| is large.

The memory requirement for the solution vectors is $|R| \times n$, where *n* is the number of rows/cols of the matrix.

We can hold at most B many solution vectors, requiring B imes n memory.

Tree-Partitioning problem

Given a set R of nodes of a node-weighted tree and a number B (*blocksize*), find a partition $\Pi(R) = \{R_1, R_2, \ldots\}$ such that $\forall R_k \in \Pi, |R_k| \leq B$, and has minimum cost

$$\operatorname{Cost}(\Pi) = \sum_{R_k \in \Pi} \operatorname{Cost}(R_k)$$
 where $\operatorname{Cost}(R_k) = \sum_{i \in P(R_k)} w(i)$

Bare minimum cost (mc):

$$Cost(R) = w(3) + w(4) + w(6)$$

+ $w(7) + w(13) + w(14)$

	Partition	Accesses	Cost(Π)
Π′	$R_1 = \{3, 13, 14\}$	$P(\mathbf{R}_1) = \{3, 7, 13, 14\}$	mc + w(7) + w(14)
	$R_2 = \{4\}$	$P(R_2) = \{4, 0, 7, 14\}$	
Π''	$R_1 = \{3, 4, 14\}$	$P(R_1) = \{3, 4, 0, 7, 14\}$	mc + w(14)
	$\pi_2 = \{15\}$	$P(\mathbf{R}_2) = \{13, 14\}$	

18/28

Can we get significant differences in pratice ? Experiments on the same set of matrices from Astrophysics:

Matrix	Lower	Factors loaded [MB]		
size	bound	No ES	Nat	Po
46,799	11,105	137,407	12,165	11,628
72,358	1,621	433,533	5,800	1,912
148,286	9,227	1,677,479	18,143	9,450

Motivations

A simple strategy (postorder, presented later), can decrease memory requirements by a factor of 2 or 3 ! Can we go further ?

Tree-Partitioning problem

Tree-Partitioning problem

Find a partition $\Pi(R) = \{R_1, R_2, \ldots\}$ such that $\forall R_k \in \Pi, |R_k| \leq B$, and has minimum cost

 $\operatorname{Cost}(\Pi) = \sum_{R_k \in \Pi} \operatorname{Cost}(R_k)$ where $\operatorname{Cost}(R_k) = \sum_{i \in P(R_k)} w(i)$

- We showed that it is NP-complete.
- There is a non-trivial lower bound.
- The case B = 2 is special and can be solved in polynomial time.
- A simple algorithm gives an approximation guarantee.
- We have a heuristic which gives extremely good results.
- We have hypergraph models that address the most general cases.

20/28

Then, the lower bound is given by:

$$\sum_{i} w(i) \left\lceil \frac{\operatorname{nr}(i)}{B} \right\rceil$$

21/28

The simplistic heuristic ${\cal H}$

Put the requested nodes in post-order (in the increasing order) and cut in blocks of size *B*.

Simple; runs in O(n) for a tree with *n* nodes. And it comes with an approximation guarantee.

Approximation guarantee

Let ${\rm Cost}^{\cal H}$ be the cost of the heuristic ${\cal H}$ and ${\rm Cost}^{\star}$ be the optimal cost. Then

 $\operatorname{Cost}^{\mathcal{H}} \leq 2 \times \operatorname{Cost}^{\star}$

22/28

23/28

The simplistic heuristic H

Put the requested nodes in post-order (in the increasing order) and cut in blocks of size *B*.

Approximation guarantee

 $\mathrm{Cost}^{\mathcal{H}} \leq 2 \times \mathrm{Cost}^{\star}$

Why? In a post-order all nodes in a subtree are numbered consecutively. At node *i* the lower bound \mathcal{L} was counting $w(i) \left\lceil \frac{\operatorname{nr}(i)}{B} \right\rceil$. Due to consecutive number of the nodes, post-order can incur, at node *i*, at most $w(i) \left(\left\lceil \frac{\operatorname{nr}(i)}{B} \right\rceil + 1 \right)$

The sum of the excess is $\leq \mathcal{L}$, hence $\operatorname{Cost}^{\mathcal{H}} \leq 2 \times \mathcal{L} \leq 2 \times \operatorname{Cost}^{2}$

Experiments on a set a various matrices: the ratio of number of accesses over the lower bound is measured:

Matrix	10% diagonal	10% off-diag
CESR(46799)	1.01	1.28
af2356	1.02	2.09
boyd1	1.03	1.92
ecl32	1.01	2.31
gre1107	1.17	1.89
saylr4	1.06	1.92
sherman3	1.04	2.51
grund/bayer07	1.05	1.96
mathworks/pd	1.09	2.10
stokes64	1.05	2.35

 \Rightarrow topological orders provide good results for the diagonal case, but are not efficient enough for the general case.

24/28

A special case and the general case

A special case: B = 2

We have an exact algorithm running in O(n) time, for a tree with n nodes.

Essential idea: find the best matching ${\mathcal M}$ among the requested nodes.

The general case: A bisection based heuristic ${\cal B}$

```
1: for level = 1 to \ell do
```

Or almost a general case: $B=2^\ell$ ©

- 2: Find the best matching \mathcal{M} among the requested nodes
- 3: for each pair in \mathcal{M} remove one, mark the remaining one as the representative for the other node(s)
- 4: end for

25/28

5: Put each vertex in the part of the representative (of its representative of its...)

Running time is $O(n \log B)$. Preliminary results are very good (work in progress).

Experiments: hypergraph model

We use PaToH [Çatalyürek and Aykanat, '99] for the tests. Here we measure the ratio hypergraph / post-order:

Matrix	10% diagonal	10% off-diag
CESR(46799)	1.01	0.75
af2356	1.03	0.69
boyd1	1.03	0.54
ecl32	1 ,05	0.56
gre1107	0.86	0.80
saylr4	0.98	0.80
sherman3	0.97	0.65
grund/bayer07	0.97	0.72
mathworks/pd	0.94	0.60
stokes64	0.99	0.80

- Diagonal case: no gain, except for "tough" problems.
- General case: on average, a gain of 30%.

26/28

Conclusions

- ullet A new feature in MUMPS (available in the next release ! igodot)
- It raises an interesting combinatorial problems, with many possible approaches.

Perspectives and work in progress

Several extensions and improvements can be studied:

- In-core case.
- Parallel environment.

27/28

Thank you for your attention !

Any questions ?

François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

28/28