
Computation of a matrix
inverse in MUMPS

François-Henry Rouet and Bora Uçar,
In collaboration with: P. R. Amestoy, I. S. Duff and Y. Robert.

Toulouse, April 16th, 2010 M
U

M
P
S

Problem definition and motivations

Problem definition

Given a large sparse matrix A, compute the entries in the diagonal of
A
−1.

Motivation/applications

• Linear least-squares solutions: Variance of the variables is at the
diagonal of the inverse of a large sparse matrix.

• Quantum-scale device simulation: The use of Green's function
reduces the problem to computing the diagonal entries of the
inverse of a large sparse matrix.

• Various other simulations: computation of short-circuit currents,
approximation of condition numbers.

2/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

How to compute the entries of the inverse?

Computing a set of entries in A−1 involves the solution of a set of
linear systems. For each requested diagonal entry, we solve

a−1ii = eTi A
−1ei .

An e�cient algorithm has to take advantage of the sparsity of A and
the canonical vectors ei .

• In numerical linear algebra, one never computes the inverse of a
matrix.

• The above equation can be solved with Gaussian elimination, a.k.a.,
LU decomposition: Assume we have LU = A, then

x = L
−1ei . solve for x

y = U
−1x . solve for y

a−1ii = eTi y . get the ith component

3/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Sparse LU decomposition

A common variant of LU decomposition

Has n − 1 steps; at step k = 1, 2, . . . , n − 1, the formulae

a
(k+1)
ij ← a

(k)
ij −

(
a

(k)
ik /a

(k)
kk

)
a

(k)
kj , for i , j > k

are used to create zeros below the diagonal entry in column k .

Each updated entry a
(k+1)
ij overwrites a

(k)
ij , and the multipliers

l ik = a
(k)
ik /a

(k)
kk may overwrite a

(k)
ik .

The process results in a unit lower triangular matrix L and an upper
triangular matrix U such that A = LU.

Fill-in occurs: some zeros in A(k) become nonzero in A(k+1).

4/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Sparse LU decomposition: filled-in matrix

The pattern of A The pattern of L+U

5/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Sparse LU decomposition: the graphs

[The graph of A] [The graph of L + U]

6/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Sparse LU decomposition: the elimination tree

[The graph of L + U]

The elimination tree

The elimination tree is a spanning
tree of the graph of L + U.

Node i is the father of node j if lij 6= 0
and i is the smallest such index.

1 2

3 64

5

7/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

The elimination tree: what to do with it?

Solve Lx = e3 for x

0
0

0
0
0

=
x

l11x1 = 0⇒ x1 = 0

l22x2 = 0⇒ x2 = 0

l32x2+l33x3 6= 0⇒ x3 6= 0

l41x1+l44x4 = 0⇒ x4 = 0

· · ·+ l53x3+l55x5 = 0⇒ x5 6= 0

l63x3 + l65x5+l66x6 = 0⇒ x6 6= 0

[Elimination tree redrawn]

Visit the nodes of the tree

starting from node 3 to the

root; they will be the nonzero

entries of x ; solve the associ-

ated equations.

8/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

The elimination tree: what to do with it?

Solve Lx = e3 for x

0
0

0
0
0

=
x

l32x2+l33x3 6= 0⇒ x3 6= 0

· · ·+ l53x3+l55x5 = 0⇒ x5 6= 0

l63x3 + l65x5+l66x6 = 0⇒ x6 6= 0

[Elimination tree redrawn]

Visit the nodes of the tree

starting from node 3 to the

root; they will be the nonzero

entries of x ; solve the associ-

ated equations.

8/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

The elimination tree: what to do with it?

Solve Lx = e3 for x

0
0

0
0
0

=
x

l32x2+l33x3 6= 0⇒ x3 6= 0

· · ·+ l53x3+l55x5 = 0⇒ x5 6= 0

l63x3 + l65x5+l66x6 = 0⇒ x6 6= 0

[Elimination tree redrawn]

Visit the nodes of the tree

starting from node 3 to the

root; they will be the nonzero

entries of x ; solve the associ-

ated equations.

8/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: back to the equations

To �nd a−1ii , solve the equations
x = L

−1ei . solve for x

y = U
−1x . solve for y

a−1ii = eTi y . get the ith component

Assume we are looking for a−133 . We have seen how we solve for x .

Solve Uy = x until we get the 3rd entry.

1 2 3 4 5 6

1

2

3

4

5

6

=

We need to solve:

u33y3 + u35y5 + u36y6 = x3

So we need y5, y6

u55y5 + u56y6 = x5

u66y6 = x6

Forget the other vars/eqns

9/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: back to the equations

To �nd a−1ii , solve the equations
x = L

−1ei . solve for x

y = U
−1x . solve for y

a−1ii = eTi y . get the ith component

Assume we are looking for a−133 . We have seen how we solve for x .

Solve Uy = x until we get the 3rd entry.

1 2 3 4 5 6

1

2

3

4

5

6

=

We need to solve:

u33y3 + u35y5 + u36y6 = x3

So we need y5, y6

u55y5 + u56y6 = x5

u66y6 = x6

Forget the other vars/eqns

9/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: a single one

To �nd a−1ii , solve the equations
x = L

−1ei . solve for x

y = U
−1x . solve for y

a−1ii = eTi y . get the ith entry

l33x3 = 1

l53x3 + l55x5 = 0

l63x3 + l65x5 + l66x6 = 0

u33y3 + u35y5 + u36y6 = x3

u55y5 + u56y6 = x5

u66y6 = x6

Forget the other vars/eqns

Uy=x)
3

= eL x 3

6

2

3

5

4

1

(

x = L−1e3, visit the nodes of
the tree starting from node 3
to the root; solve the equa-
tions associated with L.

a−1
33

=
(
U−1x

)
3
, visit the

nodes of the tree starting

from the root to node 3; solve

the equations associated with

U.

10/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: a single one

To �nd a−1ii , solve the equations
x = L

−1ei . solve for x

y = U
−1x . solve for y

a−1ii = eTi y . get the ith entry

Use the elimination

tree

For each requested
(diagonal) entry a−1ii ,

(1) visit the nodes of the
elimination tree from
the node i to the root:
at each node access
necessary parts of L,

(2) visit the nodes from
the root to the node i

again; this time access
necessary parts of U.

11/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: a single one

Notation for later use

P(i): denotes the nodes in the unique
path from the node i to the root
node r (including i and r).

P(S): denotes
⋃

s∈S P(s) for a set of
nodes S .

Use the elimination

tree

For each requested
(diagonal) entry a−1ii ,

(1) visit the nodes of the
elimination tree from
the node i to the root:
at each node access
necessary parts of L,

(2) visit the nodes from
the root to the node i

again; this time access
necessary parts of U.

11/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Experiments: interest of exploiting sparsity

Implementation

These ideas have been implemented in MUMPS during Tz. Slavova's
PhD.

Experiments: computation of the diagonal of the inverse of matrices
from data �tting in Astrophysics (CESR, Toulouse)

Matrix Time (s)
size No ES ES

46,799 6,944 472
72,358 27,728 408
148,286 >24h 1,391

Interest

Exploiting sparsity of the right-hand sides reduces the number of
accesses to the factors (in-core: number of �ops, out-of-core: accesses
to hard disks).

12/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

Same as before...

For each requested (diagonal)
entry a−1ii ,

(1) visit the nodes in P(i): at
each node access necessary
parts of L,

(2) visit the nodes in P(i)
again (in reverse order);
this time access necessary
parts of U.

...only this time

• a block-wise solve is
necessary,

• we access parts of L for all
the solves in the upward
traversal of the tree only
once,

• we access parts of U for all
the solves in the downward
traversal of the tree only
once.

13/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

7

14

13

9

11108

126

1 2 54

3

[The requested entries in the diagonal of the inverse are shown in red]

Requested accesses

a−13,3 {3, 7, 14}
a−14,4 {4, 6, 7, 14}

a−113,13 {13, 14}
a−114,14 {14}

If we were to compute all these four
entries, we just need to access the
data associated with the nodes in
red and blue.

14/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

In reality (or in a particular setting)...

Matrices are factored, e.g., the LU-decomposition is computed, in a coarser
scheme, and the factors are represented as a (sparse) collection of dense
(much) smaller submatrices.

Those submatrices are stored on disks (out-of-core setting).

When we access a part of L (or U), we load the associated dense submatrix
from the disk; at node i of the tree the cost of the load is proportional to
w(i): the weight of the node.

Cost

Given a set of requested entries S , we visit all the nodes in P(S), and the
total cost is Cost(S) =

∑
i∈P(S) w(i).

Assuming we can hold S many solution vectors in memory, this is the

absolute minimum we can do for a given set S of requested entries.
15/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

7

14

13

9

11108

126

1 2 54

3

[The requested entries S in the diagonal of the inverse are in red.]

Requested accesses

a−13,3 {3, 7, 14}
a−14,4 {4, 6, 7, 14}

a−113,13 {13, 14}
a−114,14 {14}

If we compute all at the same time,
we need to access the data asso-
ciated with the nodes in P(S) =
{3, 4, 6, 7, 13, 14} shown in red and
blue.

Cost(S) =
∑

i∈P(S)

w(i) = w(3) +w(4) +w(6) +w(7) +w(13) +w(14)

16/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

In reality (or in a particular setting)...

We are to compute a set R of requested entries. Usually |R| is large.
The memory requirement for the solution vectors is |R| × n, where n is the
number of rows/cols of the matrix.

We can hold at most B many solution vectors, requiring B × n memory.

Tree-Partitioning problem

Given a set R of nodes of a node-weighted tree and a number B
(blocksize), �nd a partition Π(R) = {R1,R2, . . .} such that
∀Rk ∈ Π, |Rk | ≤ B , and has minimum cost

Cost(Π) =
∑
Rk∈Π

Cost(Rk) where Cost(Rk) =
∑

i∈P(Rk)

w(i)

17/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

7

14

13

9

11108

126

1 2 54

3

[R = {3, 4, 13, 14} and B = 3]

Bare minimum cost (mc):

Cost(R) = w(3) + w(4) + w(6)

+ w(7) + w(13) + w(14)

Partition Accesses Cost(Π)

Π′
R1 = {3, 13, 14} P(R1) = {3, 7, 13, 14}

mc + w(7) + w(14)
R2 = {4} P(R2) = {4, 6, 7, 14}

Π′′
R1 = {3, 4, 14} P(R1) = {3, 4, 6, 7, 14}

mc + w(14)
R2 = {13} P(R2) = {13, 14}

18/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Entries of the inverse: multiple entries

Can we get signi�cant di�erences in pratice ?
Experiments on the same set of matrices from Astrophysics:

Matrix Lower Factors loaded [MB]
size bound No ES Nat Po

46,799 11,105 137,407 12,165 11,628
72,358 1,621 433,533 5,800 1,912
148,286 9,227 1,677,479 18,143 9,450

Motivations

A simple strategy (postorder, presented later), can decrease memory
requirements by a factor of 2 or 3 !
Can we go further ?

19/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Tree-Partitioning problem

Tree-Partitioning problem

Find a partition Π(R) = {R1,R2, . . .} such that ∀Rk ∈ Π, |Rk | ≤ B ,
and has minimum cost

Cost(Π) =
∑
Rk∈Π

Cost(Rk) where Cost(Rk) =
∑

i∈P(Rk)

w(i)

• We showed that it is NP-complete.

• There is a non-trivial lower bound.

• The case B = 2 is special and can be solved in polynomial time.

• A simple algorithm gives an approximation guarantee.

• We have a heuristic which gives extremely good results.

• We have hypergraph models that address the most general cases.

20/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Lower bound L

Number of requests

nr(i): number of requested nodes in the
subtree rooted at node i

nr(i) =
∑

j∈children(i)

nr(j) + req(i)
4

6

5

1 2

3

7

0

0+1 1+0

1

1+1+1

3+0

3+0

Then, the lower bound is given by:∑
i

w(i)

⌈
nr(i)

B

⌉

21/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

A simplistic heuristic

The simplistic heuristic H
Put the requested nodes in post-order (in the increasing order) and
cut in blocks of size B .

Simple; runs in O(n) for a tree with n nodes. And it comes with an
approximation guarantee.

Approximation guarantee

Let CostH be the cost of the heuristic H and Cost
? be the optimal

cost. Then
Cost

H ≤ 2× Cost
?

22/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

A simplistic heuristic

The simplistic heuristic H
Put the requested nodes in post-order (in the increasing order) and
cut in blocks of size B .

Approximation guarantee

Cost
H ≤ 2× Cost

?

Why? In a post-order all nodes in a subtree are numbered consecutively. At

node i the lower bound L was counting w(i)
⌈
nr(i)
B

⌉
. Due to consecutive

number of the nodes, post-order can incur, at node i , at most

w(i)

(⌈
nr(i)

B

⌉
+ 1

)
The sum of the excess is ≤ L, hence

Cost
H ≤ 2× L ≤ 2× Cost

?

23/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

A simplistc heuristic: experiments. . .

Experiments on a set a various matrices: the ratio of number of
accesses over the lower bound is measured:

Matrix 10% diagonal 10% o�-diag

CESR(46799) 1.01 1.28
af2356 1.02 2.09
boyd1 1.03 1.92
ecl32 1.01 2.31
gre1107 1.17 1.89
saylr4 1.06 1.92
sherman3 1.04 2.51
grund/bayer07 1.05 1.96
mathworks/pd 1.09 2.10
stokes64 1.05 2.35

⇒ topological orders provide good results for the diagonal case, but
are not e�cient enough for the general case.

24/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

A special case and the general case

A special case: B = 2

We have an exact algorithm running in O(n) time, for a tree with n

nodes.
Essential idea: �nd the best matchingM among the requested nodes.

The general case: A bisection based heuristic B
Or almost a general case: B = 2` ,1: for level = 1 to ` do

2: Find the best matchingM among the requested nodes
3: for each pair inM remove one, mark the remaining one as the

representative for the other node(s)
4: end for

5: Put each vertex in the part of the representative (of its representative of
its. . .)

Running time is O(n logB). Preliminary results are very good (work in

progress).

25/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Experiments: hypergraph model

We use PaToH [Çatalyürek and Aykanat, '99] for the tests. Here we
measure the ratio hypergraph / post-order:

Matrix 10% diagonal 10% o�-diag

CESR(46799) 1.01 0.75
af2356 1.03 0.69
boyd1 1.03 0.54
ecl32 1,05 0.56
gre1107 0.86 0.80
saylr4 0.98 0.80
sherman3 0.97 0.65
grund/bayer07 0.97 0.72
mathworks/pd 0.94 0.60
stokes64 0.99 0.80

• Diagonal case: no gain, except for "tough" problems.

• General case: on average, a gain of 30%.
26/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Conclusion

Conclusions

• A new feature in MUMPS (available in the next release ! ,)

• It raises an interesting combinatorial problems, with many possible
approaches.

Perspectives and work in progress

Several extensions and improvements can be studied:

• In-core case.

• Parallel environment.

27/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

Conclusion

Thank you for your attention !

Any questions ?

28/28 François-Henry Rouet and Bora Uçar, Toulouse, April 16th, 2010

