Computation of a matrix
inverse in MUMPS

Frangois—-Henry R.ouet and Bora WUear,

Proerlem definition and motivations

Prorlem definition

Given a large sparse matrix /\, compute the entries in the diagonal of

Mortivation/applications

: Variance of the variables is at the
diagonal of the inverse of a large sparse matrix.

: The use of Green’s function
reduces the problem to computing the diagonal entries of the
inverse of a large sparse matrix.

Various other simulations: computation of short-circuit currents,
approximation of condition numbers.

Frangois—Henry R.ouet and Bora Ugar, Toulouse, April Ith, 2010

How to compute the entries of the inverse?

Computing a set of entries in A~! involves the solution of a set of
linear systems. For each requested diagonal entry, we solve

-1 _ Tpa-1_
a;"=¢ A e .

An efficient algorithm has to take advantage of the sparsity of A and
the canonical vectors e;.

* In numerical linear algebra, one never computes the inverse of a
matrix.

e The above equation can be solved with Gaussian elimination, a.k.a.,
LU decomposition: Assume we have LU = A, then

X = L_le,' >

Sparse LU decomposition

A common variant of LU decomposition

Has steps; at step Kk =1,2,..., , the formulae

are used to create zeros below the diagonal entry in column

(k+1) (k)

p i and the multipliers

overwrites a

(k)

lig = a,(-,f)/ag;) may overwrite a;, .

Each updated entry a

The process results in a unit lower triangular matrix L and an upper
triangular matrix U such that A = LU.

Fill-in occurs: some zeros in A%) become nonzero in Alk+1),

Sparse LU decomposition: Matrix

0 0
1 [[) 1 (] e o
2 2 [J
3 3 []
4 o 4 []
5 [] 5 [J
6 e o [6 ®
7 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
nz=18 nz=6

The pattern of A The pattern of L + U

Sparse LU decomposition: the araphs

7 7
aaaaaaaaaaaaaaaa

[The graph of A] [The graph of L + U]

Sparse LU decomposition: the elimination tree

6

The elimination tree

The elimination tree is a spanning

tree of the graph of L +

Node / is the father of node ; if
and / is the smallest such index.

7
0

1 2 3 4 5 6 7

6@

/28

[The graph of L + U]
Frangois—Henry R.ouet and Bora Ugar, Toulouse, April Ith, 2010

The elimination tree: what to do with it?

Solve Lx = e3 for x

° 0
2 ° 0 @
3 o o ®
4 e o z| ~ o (5)
s © @ @ 0 @ 0
6 o o0) 0 e e

1 2 3 4 5 6 1 2

[Elimination tree redrawn]
/11x1=0=x1 =0
looxo =0 = xo =0

lg1x1+1aaxs =0 = x4 =0

The elimination tree: what to do with it?

Solve Lx = e3 for x

o 0
A 0 (©)
3 o O []
4 e o z| ~ o (5)
5 @ @ 0@ @ @ 0
s o o o 0 0 e e

1 2 3 4 5 6 1 2

[Elimination tree redrawn]

I3ox2+133x3 # 0 = x3 # 0

<o+ Is3x3+/s5x5 = 0= x5 # 0
le3x3 + lesxs+leex6 = 0 = x6 # 0

The elimination tree: what to do with it?

Solve Lx = e3 for x

it @ 0
2 ° 0
3 o O _1°
N) ° z| ~ |0
s © @ @ 0 @ 0
6 o o L) 0

I3ox2+133x3 # 0 = x3 # 0

<o+ Isaxz+ssxs =0 = x5 #0
le3x3 + lesxs+leex6 = 0 = x6 # 0

1 2

[Elimination tree redrawn]

Visit the nodes of the tree
starting from node 3 to the
root; they will be the nonzero
entries of x; solve the associ-
ated equations.

Entries of the inverse: rack to the equations

To find a;l, solve the equations
X = Lfle,' >
y=Ux »

-1_ T
a; =ey »

Assume we are looking for a3_1. We have seen how we solve for x.

Solve Uy = x until we get the 3rd entry.

! e PR We need to solve:

2 o0) Uzzy3 + Ussys + UseYe = X3
8 ® e _|® So we need ys, y¢

4 [N]

5 [AN) [)

6 o []

Entries of the inverse: rack to the equations

To find a1, solve the equations

i
X = Lfle,' >
y=Ux »

1 T
aji &y b

Assume we are looking for a3_1. We have seen how we solve for x.

Solve Uy = x until we get the 3rd entry.

! e PR We need to solve:

2 o0 L) Uzzys3 + Uzsys + UseYe = X3
8 ® e _|® So we need ys, y¢

: ¢ UssYs + Us6yY6 = Xs
5 [2N] []

6 Y) UeeYe = Xe

Ty s e Forget the other vars/eqns

Entries of the inverse: a sinale one

To find a;l, solve the equations

= L_le,' >

I33x3

Is53x3 + I55x5 =

le3x3 + lesxs + le6Xe

U33zy3 + Ussys + UseYe =

UssYs + Useye =

UesY6
Forget the other vars/eqns

X3
X5

X6

x = L~ Le;, visit the nodes of
the tree starting from node 3
to the root; solve the equa-
tions associated with L.

a3 = (Ux),, visit the

nodes of the tree starting
from the root to node 3; solve
the equations associated with

u.

Entries of the inverse: a sinale one

Use the elimination
tree

For each requested
(diagonal) entry 2. -,

To find a;%, solve the equations
visit the nodes of the
x=L"1e b elimination tree from
the node / to the root:
at each node access

necessary parts of |,

y=U"1x o
-1

aIl

_ T

=e'yD
visit the nodes from
the root to the node
again; this time access
necessary parts of

Entries of the inverse: a sinale one

Notation for later use
denotes the nodes in the unique
(including i and r).

denotes for a set of
nodes S.

Use the elimination
tree

For each requested
(diagonal) entry 2. -,

visit the nodes of the
elimination tree from
the node / to the root:
at each node access
necessary parts of L,

visit the nodes from
the root to the node
again; this time access
necessary parts of

Experiments: interest of exploiting sparsity

IMmplementation

These ideas have been implemented in MUMPS during
PhD.

Experiments: computation of the diagonal of the inverse of matrices
from data fitting in Astrophysics (CESR, Toulouse)

Matrix Time (s)
size No ES ES
46,799 6,944 472
72,358 | 27,728 408
148,286 >24h | 1,391

Interest

Exploiting sparsity of the right-hand sides reduces the number of

accesses to the factors (number of flops, accesses
to hard disks).

2./2.8 Frangois—Henry R.ouet and Bora Ugar, Toulouse, April Ith, 2010

Entries of the inverse: multiple entries

.only this time

Same as refore..

For each requested (diagonal)
entry ,

a block-wise solve is
necessary,

visit the nodes in . at
each node access necessary
parts of L,

visit the nodes in

again (in reverse order);
this time access necessary
parts of

we access parts of L for all
the solves in the upward
traversal of the tree

we access parts of U for all
the solves in the downward
traversal of the tree

Entries of the inverse: multiple entries

[The requested entries in the diagonal of the inverse are shown in red]

Requested | accesses
a;é (3,7,14} If we were t(? compute all these four
azlel (4,6,7,14) entries, weljust ne.ed to access the
_1” data associated with the nodes in
a;313 | 113,14}
-~ red and blue.
21414 | {14}

Entries of the inverse: multiple entries

In reality (or in a particular setting)..

Matrices are factored, e.g., the |l-decomposition is computed, in a coarser
scheme, and the factors are represented as a (sparse) collection of dense
(much) smaller submatrices.

Those submatrices are stored on (out-of-core setting).

When we access a part of L (or U), we load the associated dense submatrix
from the disk; at node i of the tree the cost of the load is proportional to
w(i): the weight of the node.

Cost

Given a set of requested entries 5, we visit all the nodes in , and the
total cost is

Assuming we can hold S many solution vectors in memory, this is the

absolute minimum we can do for a given set S of requested entries.
5/2.8 Frangois—Henry R.ouet and Bora Ugar, Toulouse, April Ith, 2010

Entries of the inverse: multiple entries

[The requested entries S in the diagonal of the inverse are in red.]

Requested | accesses
a3z | {3,7,14}
ags | {4.6,7,14}

a1_31,13 {13,14}
af41_14 {14}

If we compute all at the same time,
we need to access the data asso-
ciated with the nodes in P(S) =
{3,4,6,7,13,14} shown in red and
blue.

Cost(S) = > w(i) = w(3)+w(4)+w(6)+ w(7)+ w(13) + w(14)
ieP(S)

Entries of the inverse: multiple entries

INn reality (or in a particular setting)..

We are to compute a set R of requested entries. Usually |R| is large.

The memory requirement for the solution vectors is |R| x n, where n is the
number of rows/cols of the matrix.

Tree-Partitioning prorlem

Given a set R of nodes of a node-weighted tree and a number B
(blocksize),

Cost(N) = ZCost(Rk) where Cost(Ry) = Z w (i)
Rien i€eP(Ri)

Entries of the inverse: multiple entries

Bare minimum cost (mc):
o @ Cost(R) = w(3) + w(4) + w(6)
+ w(7) + w(13) + w(14)

[R = {3,4,13,14} and B = 3]

Partition Accesses Cost ()
, | Ry =1{3,13,14}| P(R1) = {3,7,13,14}
M R;={4} P(R 1) {46714} me 4+ w(7) + w(14)
JIRi=1{3.4,14} [P(Ry) = {3,4,6,7,14}
M = (131 | P(Rs) = {13.14) me + w(14)

Entries of the inverse: multiple entries

Can we get significant differences in pratice ?
Experiments on the same set of matrices from Astrophysics:

Matrix | Lower Factors loaded [MB]
size bound No ES Nat Po

46,799 | 11,105 137,407 | 12,165 | 11,628

72,358 | 1,621 433,533 | 5,800 | 1912
148,286 | 9,227 | 1,677,479 | 18,143 | 9,450

Mortivations

A simple strategy (, presented later), can decrease memory

requirements by a factor of 2 or 3 !
Can we go further 7

Tree-Partitionina prorlem

Tree-Partitioning prorlem

Z Cost(Rx) where Cost(Ry) =
Rien

We showed that it is NP-complete.

There is a non-trivial lower bound.

The case B = 2 is special and can be solved in polynomial time.

A simple algorithm gives an approximation guarantee.

We have a heuristic which gives extremely good results.

We have hypergraph models that address the most general cases.

Numeer of requests

nr(/): number of requested nodes in the
subtree rooted at node

Then, the lower bound is given by:

A simplistic heuristic

The simplistic heuristic H

Put the requested nodes in post-order (in the increasing order) and
cut in blocks of size B.

Simple; runs in O(n) for a tree with n nodes. And it comes with an
approximation guarantee.

Approximation guarantee
Let Cost™ be the cost of the heuristic H and Cost* be the optimal

cost. Then

22/28 Frangois-Henry R.ouet and Bora Ugar, Toulouse, April Ith, 2010

A simplistic heuristic

The simplistic heuristic H
Put the requested nodes in post-order (in the increasing order) and

cut in blocks of size B.

Approximation guarantee

Why? At
nr(i)
B

node i the lower bound £ was counting w(7) [

—‘. Due to consecutive
number of the nodes,

The sum of the excess is < L, hence

A simpliste heuristic: experiments. ..

Experiments on a set a various matrices: the ratio of number of
accesses over the lower bound is measured:

Matrix 10% diagonal | 10% off-diag
CESR(46799) 1.01 1.28
af2356 1.02 2.09
boyd1 1.03 1.92
ecl32 1.01 231
grel107 1.17 1.89
saylr4 1.06 1.92
sherman3 1.04 251
grund /bayer07 1.05 1.96
mathworks/pd 1.09 2.10
stokes64 1.05 2.35

= topological orders provide good results for the diagonal case, but
are not efficient enough for the general case.

A special case and the ceneral case

A special case: B =2

We have an exact algorithm running in , for a tree with n
nodes.

The general case: A Risection rased heuristic B

: for level =1 to / do
Find the best matching M among the requested nodes
for each pair in M remove one, mark the remaining one as the
for the other node(s)
: end for

: Put each vertex in the part of the

Running time is . Preliminary results are very good

Experiments: hyperaraph model

We use PaToH [Catalyiirek and Aykanat, '99] for the tests. Here we
measure the ratio hypergraph / post-order:

Matrix 10% diagonal | 10% off-diag
CESR(46799) 1.01 0.75
af2356 1.03 0.69
boyd1 1.03 0.54
ecl32 1,05 0.56
grel107 0.86 0.80
saylr4 0.98 0.80
sherman3 0.97 0.65
grund /bayer07 0.97 0.72
mathworks/pd 0.94 0.60
stokes64 0.99 0.80

e Diagonal case: no gain, except for "tough" problems.

o General case: on average, a gain of 30%.

Conclusion

Conclusions

A new feature in MUMPS

It raises an interesting combinatorial problems, with many possible
approaches.

Perspectives and work in proaress

Several extensions and improvements can be studied:

Frangois—Henry R.ouet and Pora Ugar, Toulouse, April Ith, °

Conclusion

Thank you for your attention !

Any questions 7

