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Context

Solving sparse linear

systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM

matrix

• 3.7× 106 variables

• 156× 106 non zeros in A

• 4.5× 109 non zeros in LU

• 26.5× 1012 flops
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Context

Physical constraint

 Memory required

   Core memory

Memory crash

Software challenge

• Implementation of an
out-of-core execution scheme
within MUMPS
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Context

Out-of-core

 Memory required

   Core memory Disks

Use of disks

Software challenge

• Implementation of an
out-of-core execution scheme
within MUMPS

2/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010



Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

3/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010



Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

4/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010



The multifrontal method (Duff, Reid’83)
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Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.
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Memory behaviour (serial postorder traversal)
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Parallel multifrontal scheme

• Type 1 : Nodes processed on a single processor

• Type 2 : Nodes processed with a parallel 1D blocked factorization

• Type 3 : Parallel 2D cyclic factorization (root node)

P0

P0

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2

P0

P0

P1 P3

P3

T
IM

E

: STATIC

2D static decomposition

SUBTREES

7/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010



Parallel multifrontal scheme

• Type 1 : Nodes processed on a single processor

• Type 2 : Nodes processed with a parallel 1D blocked factorization

• Type 3 : Parallel 2D cyclic factorization (root node)

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

7/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010



Solution step

Solution step → solve the given system using the factored matrix.

  1   2

  3   4

  5

 6   7

 8

9 10

 11

Assembly Tree

BackwardForward

Sequential case:

• forward step(Fwd): postordering as in the factorization phase

• backward step(Bwd): in the reverse order

Parallel case:

• no guarantee of the order in which the nodes are processed
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What gains can we expect?

Typical memory behavior : Active memory / total memory ratio
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Out-of-core factorization (Phd of E. Agullo)

Out-of-core storage of factors :

→ write factor to disk as soon as they are computed.

Synchronous Version:

• Use standard write operations

• Factors are written to disk as soon as they are computed

Asynchronous Version:

• Copy factors to a user buffer as
soon as they are computed

• A dedicated I/O thread writes
factors from the user buffer to
disk

thread

I/O thread

I/O Request

I/O

Compute

Next step → factors and stack out-of-core (largest problems or many
processors)
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Parallel behavior

Performance study: parallel executions (CRAY XD1 system at
CERFACS, local disks)
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Volume of I/O minimization

• Assumption: factors written to disk as soon as computed.

• Active memory peak: tree traversal-dependent.

Memory peak

(a) Worst case

Memory peak

(b) Best case

• Liu’86: Optimum algorithm (MinMEM) for minimizing the peak of
active memory.

• Problem: How to minimize the I/O volume when the active
memory does not hold in a given amount of physical memory M0 ?
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Proportional mapping VS postorder traversal

Elimination tree :

d=0

d=1

d=2

d=3

d=4

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.
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Proportional mapping VS postorder traversal

Elimination tree :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.
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Out-of-core Solution step (Phd of T. Slavova)

Assumptions:

• During factorization all factors are written to local disks

• No factors are kept in memory at the beginning of the solution step

How to load efficiently data from disk?

• Each factor-block is loaded only
once

• User control of number and size
of buffers

• One Emergency buffer (EMG),
to hold largest front (demand
driven)

• Other buffers used to
automatically prefetch data
with a look-ahead mechanism

EMG areaPrefetching areaPrefetching area

On Disk

On the way

In memory
Ready

In memory
Used

Not used
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Scheduling for the solution step

Pool of tasks: list of all tasks ready to be executed (scheduling)

• Illustration: sequential processing of the tree

  1   2

  3   4

  5

 6   7

 8

9 10

 11

Pool at the beginning of FWD
I - II step

10 7 6 4 2 1

III step
10 7 6 4 3

54321 6 7 8 9 10 11

Factors Data on the HARD DISK

FWD
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Experimental results

QIMONDA07 (Qimonda AG company)

Strategy Nb of Factor Size Workspace Fwd Bwd
Procs (MB) (MB) (sec) (sec)

lifo 171.5 177.2
nns 1 2 534 12 170.6 176.8
lifo 25.2 137.6
nns 8 317 12 29.0 45.2
lifo 11.0 53.1
nns 32 79 8.2 10.2 10.7
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Experimental results

AMANDE (CEA-CESTA)

Strategy Nb of Factor Size Workspace Fwd Bwd
Procs (MB) (MB) (sec) (sec)

lifo 725.9 964.8
nns 20 1625 425 678.0 866.1
lifo 679.8 1071.6
nns 24 1364 366 475.5 629.5
lifo 358.9 814.6
nns 32 1028 261 350.9 564.6
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I/O Mechanisms

read and write operations use a cache mechanism ( page cache)

• For each call to read or write, data is kept in the page cache at
the kernel level

• User doesn’t know when data is “really” written to disk (unless by
explicit synchronization)

• User has no control on the size of the page cache

• The page cache is usually managed with a LRU scheme

In our context, page cache can be dangerous.

• I/O may not have the same speed
(depending on whether disk is accessed
or not)

• The kernel may dramatically slowdown
the performance of I/O’s.

Main memory

Disk

Swap may occure

⇒ Use of direct I/O mechanisms
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Direct I/O scheme

Advantages:
• Data is directly written to disk (data is not copied in the page

cache)
• Very efficient I/O operations

Drawbacks:
• A disk access is made at each call to read or write
• Data needs to be aligned in memory

Direct I/O scheme ⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Factorization time (seconds)

Direct I/O Direct I/O P.C. P.C. in-core
Sync. Async. Sync. Async.

AUDIKW 1 2417.1 2217.3 2260.8 2211.3 2126.4
CONESHL MOD 995.6 967.2 979.2 953.6 930.4
CONV3D64 10826.9 7599.4 8078.4 7981.6 -
ULTRASOUND80 1446.9 1389.8 1436.4 1377.3 1382.5
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Direct I/O scheme

Advantages:
• Data is directly written to disk (data is not copied in the page

cache)
• Very efficient I/O operations

Drawbacks:
• A disk access is made at each call to read or write
• Data needs to be aligned in memory

Direct I/O scheme ⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Time for solution step (Qimonda07 matrix)

Forward Backward

Direct I/O (Demand-driven) 1149.2 1279.2
Direct I/O (Look-ahead) 174.0 183.7
P.C. (Demand-driven) 186.4 207.7
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Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work
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Conclusion

• Implementation of an out-of-core extension of MUMPS.
◦ Available to the community since two years.
◦ 2 PhD thesis in this context.
◦ Everything has not been made available to the users yet.

• What still has to be integrated?
◦ Direct I/O scheme.
◦ I/O driven scheduling for solution step.
◦ ...

• Out-of-core related features.
◦ 64-bit addressing for internal arrays.
◦ Communication buffer size reduction.
◦ Interleaved I/O operations (with computations) for the processing of

frontal matrices.
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Future work

• Design and study memory scalable algorithms with a good
performance behaviour.

å In the continuation of Emmanuel’s thesis.
å François-Henri will work on this topic.

• Improve the out-of-core API.

• Do we need to go further? (we hope so)
◦ Out-of-core dynamic memory management.
◦ Integration of the I/O minimizing algorithms (and their adaptation to

the parallel context).
◦ ...
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