
out-of-core extension of
the MUMPS solver

Abdou Guermouche, Labri Bordeaux

MUMPS Users Group Meeting, April 2010 M
U

M
P
S

Context

Solving sparse linear

systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM

matrix

• 3.7× 106 variables

• 156× 106 non zeros in A

• 4.5× 109 non zeros in LU

• 26.5× 1012 flops

2/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Context

Solving sparse linear

systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM

matrix

• 3.7× 106 variables

• 156× 106 non zeros in A

• 4.5× 109 non zeros in LU

• 26.5× 1012 flops

2/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Context

Physical constraint

 Memory required

 Core memory

Memory crash

Software challenge

• Implementation of an
out-of-core execution scheme
within MUMPS

2/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Context

Out-of-core

 Memory required

 Core memory Disks

Use of disks

Software challenge

• Implementation of an
out-of-core execution scheme
within MUMPS

2/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

3/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

4/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

3

5

4

2

1

1 2 3 4 5

3

5

4

2

1

1 2 3 4 5

Non−zero Fill−in

A=

00

0

0

0

0 0 0

0

0

00

0 0

0 0

0

0

0 0

0

0

L+U−I=

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

The multifrontal method (Duff, Reid’83)

Storage divided into two parts:

• Factors systematically written to disk;

• Active Storage kept in memory.

Factors
Stack of

contribution

blocks

Active

frontal
matrix

Active Storage

3

2

4

5

1

1

5

4 2

3

3

4

4

5

5

Factors

Contribution block

Elimination tree

5/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Memory behaviour (serial postorder traversal)

3

21

6/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Parallel multifrontal scheme

• Type 1 : Nodes processed on a single processor

• Type 2 : Nodes processed with a parallel 1D blocked factorization

• Type 3 : Parallel 2D cyclic factorization (root node)

P0

P0

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2

P0

P0

P1 P3

P3

T
IM

E

: STATIC

2D static decomposition

SUBTREES

7/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Parallel multifrontal scheme

• Type 1 : Nodes processed on a single processor

• Type 2 : Nodes processed with a parallel 1D blocked factorization

• Type 3 : Parallel 2D cyclic factorization (root node)

P0
P1

P0

P0

P1

P3

P2

P1

P3P2

P0 P1

P3

P0 P1

P0

P0

P3

P0

P2 P2

P0

P2
P2
P3
P0

P0

P0

P1 P3

P3

T
IM

E

P0

: STATIC

P2

1D pipelined factorization

: DYNAMIC

P3 and P0 chosen by P2 at runtime

2D static decomposition

SUBTREES

P2
P3

7/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Solution step

Solution step → solve the given system using the factored matrix.

 1 2

 3 4

 5

 6 7

 8

9 10

 11

Assembly Tree

BackwardForward

Sequential case:

• forward step(Fwd): postordering as in the factorization phase

• backward step(Bwd): in the reverse order

Parallel case:

• no guarantee of the order in which the nodes are processed

8/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

9/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

What gains can we expect?

Typical memory behavior : Active memory / total memory ratio

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70M
ax

im
im

 p
ea

k
of

 a
ct

iv
e

m
em

or
y/

M

ax
im

um
 p

ea
k

of
 to

ta
l m

em
or

y
(r

at
io

)

Number of processors

AUDIKW_1
CONESHL_MOD

CONESHL2
CONV3D

ULTRASOUND80

10/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core factorization (Phd of E. Agullo)

Out-of-core storage of factors :

→ write factor to disk as soon as they are computed.

Synchronous Version:

• Use standard write operations

• Factors are written to disk as soon as they are computed

Asynchronous Version:

• Copy factors to a user buffer as
soon as they are computed

• A dedicated I/O thread writes
factors from the user buffer to
disk

thread

I/O thread

I/O Request

I/O

Compute

Next step → factors and stack out-of-core (largest problems or many
processors)

11/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core factorization (Phd of E. Agullo)

Out-of-core storage of factors :

→ write factor to disk as soon as they are computed.

Synchronous Version:

• Use standard write operations

• Factors are written to disk as soon as they are computed

Asynchronous Version:

• Copy factors to a user buffer as
soon as they are computed

• A dedicated I/O thread writes
factors from the user buffer to
disk

thread

I/O thread

I/O Request

I/O

Compute

Next step → factors and stack out-of-core (largest problems or many
processors)

11/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core factorization (Phd of E. Agullo)

Out-of-core storage of factors :

→ write factor to disk as soon as they are computed.

Synchronous Version:

• Use standard write operations

• Factors are written to disk as soon as they are computed

Asynchronous Version:

• Copy factors to a user buffer as
soon as they are computed

• A dedicated I/O thread writes
factors from the user buffer to
disk

thread

I/O thread

I/O Request

I/O

Compute

Next step → factors and stack out-of-core (largest problems or many
processors)

11/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core factorization (Phd of E. Agullo)

Out-of-core storage of factors :

→ write factor to disk as soon as they are computed.

Synchronous Version:

• Use standard write operations

• Factors are written to disk as soon as they are computed

Asynchronous Version:

• Copy factors to a user buffer as
soon as they are computed

• A dedicated I/O thread writes
factors from the user buffer to
disk

thread

I/O thread

I/O Request

I/O

Compute

Next step → factors and stack out-of-core (largest problems or many
processors)

11/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Parallel behavior

Performance study: parallel executions (CRAY XD1 system at
CERFACS, local disks)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2 4 6 8 10 12 14 16

R
at

io
 O

O
C

 /
IC

 fo
r

fa
ct

or
iz

at
io

n
st

ep

Number of processors

Asynchronous OOC / IC
Synchronous OOC / IC

Elapsed time for the factorization step (normalized to the in-core case) -

CONESHL MOD matrix

RED: time Asynchronous version
time in-core GREEN: time Synchronous version

time in-core
12/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Volume of I/O minimization

• Assumption: factors written to disk as soon as computed.

• Active memory peak: tree traversal-dependent.

Memory peak

(a) Worst case

Memory peak

(b) Best case

• Liu’86: Optimum algorithm (MinMEM) for minimizing the peak of
active memory.

• Problem: How to minimize the I/O volume when the active
memory does not hold in a given amount of physical memory M0 ?

13/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Volume of I/O minimization

• Assumption: factors written to disk as soon as computed.

• Active memory peak: tree traversal-dependent.

Memory peak

(c) Worst case

Memory peak

(d) Best case

• Liu’86: Optimum algorithm (MinMEM) for minimizing the peak of
active memory.

• Problem: How to minimize the I/O volume when the active
memory does not hold in a given amount of physical memory M0 ?

13/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Elimination tree :

d=0

d=1

d=2

d=3

d=4

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.

14/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Proportional mapping:

d=0

d=1

d=2

d=3

d=4

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.

14/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Proportional mapping:

d=0

d=1

d=2

d=3

d=4

512

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.

14/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Proportional mapping:

d=0

d=1

d=2

d=3

d=4

256 256

128 128 128 128

512

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.

14/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Proportional mapping:

d=0

d=1

d=2

d=3

d=4

256 256

128 128 128 128

512

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.

14/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Proportional mapping:

Mapping

• Initially: all processors on root
node;

• Recursively split the set of
processors on child subtrees.

Advantages and drawbacks

, Fine-grain + coarse-grain
parallelism;

/ bad memory efficiency.

14/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Elimination tree :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Proportional mapping VS postorder traversal

Postorder traversal :

d=0

d=1

d=2

d=3

d=4

512

512

512

512 512512

512

Traversal

• Postorder traversal, node by
node;

• all processors on each node.

Advantages and drawbacks

/ Only fine-grain parallelism;

, high memory efficiency.

15/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

16/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core Solution step (Phd of T. Slavova)

Assumptions:

• During factorization all factors are written to local disks

• No factors are kept in memory at the beginning of the solution step

How to load efficiently data from disk?

• Each factor-block is loaded only
once

• User control of number and size
of buffers

• One Emergency buffer (EMG),
to hold largest front (demand
driven)

• Other buffers used to
automatically prefetch data
with a look-ahead mechanism

EMG areaPrefetching areaPrefetching area

On Disk

On the way

In memory
Ready

In memory
Used

Not used

17/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core Solution step (Phd of T. Slavova)

Assumptions:

• During factorization all factors are written to local disks

• No factors are kept in memory at the beginning of the solution step

How to load efficiently data from disk?

• Each factor-block is loaded only
once

• User control of number and size
of buffers

• One Emergency buffer (EMG),
to hold largest front (demand
driven)

• Other buffers used to
automatically prefetch data
with a look-ahead mechanism

EMG areaPrefetching areaPrefetching area

On Disk

On the way

In memory
Ready

In memory
Used

Not used
17/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core Solution step (Phd of T. Slavova)

Assumptions:

• During factorization all factors are written to local disks

• No factors are kept in memory at the beginning of the solution step

How to load efficiently data from disk?

• Each factor-block is loaded only
once

• User control of number and size
of buffers

• One Emergency buffer (EMG),
to hold largest front (demand
driven)

• Other buffers used to
automatically prefetch data
with a look-ahead mechanism

EMG areaPrefetching areaPrefetching area

On Disk

On the way

In memory
Ready

In memory
Used

Not used
17/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Out-of-core Solution step (Phd of T. Slavova)

Assumptions:

• During factorization all factors are written to local disks

• No factors are kept in memory at the beginning of the solution step

How to load efficiently data from disk?

• Each factor-block is loaded only
once

• User control of number and size
of buffers

• One Emergency buffer (EMG),
to hold largest front (demand
driven)

• Other buffers used to
automatically prefetch data
with a look-ahead mechanism

EMG areaPrefetching areaPrefetching area

On Disk

On the way

In memory
Ready

In memory
Used

Not used
17/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Scheduling for the solution step

Pool of tasks: list of all tasks ready to be executed (scheduling)

• Illustration: sequential processing of the tree

 1 2

 3 4

 5

 6 7

 8

9 10

 11

Pool at the beginning of FWD
I - II step

10 7 6 4 2 1

III step
10 7 6 4 3

54321 6 7 8 9 10 11

Factors Data on the HARD DISK

FWD

18/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Scheduling for the solution step

Pool of tasks: list of all tasks ready to be executed (scheduling)

• Illustration: sequential processing of the tree

 1 2

 3 4

 5

 6 7

 8

9 10

 11

Pool at the beginning of FWD
I - II step

10 7 6 4 2 1

III step
10 7 6 4 3

Pool at the beginning of BWD
I step

11

II step
9 10

54321 6 7 8 9 10 11

Factors Data on the HARD DISK

FWD BWD

18/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Experimental results

QIMONDA07 (Qimonda AG company)

Strategy Nb of Factor Size Workspace Fwd Bwd
Procs (MB) (MB) (sec) (sec)

lifo 171.5 177.2
nns 1 2 534 12 170.6 176.8
lifo 25.2 137.6
nns 8 317 12 29.0 45.2
lifo 11.0 53.1
nns 32 79 8.2 10.2 10.7

19/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Experimental results

AMANDE (CEA-CESTA)

Strategy Nb of Factor Size Workspace Fwd Bwd
Procs (MB) (MB) (sec) (sec)

lifo 725.9 964.8
nns 20 1625 425 678.0 866.1
lifo 679.8 1071.6
nns 24 1364 366 475.5 629.5
lifo 358.9 814.6
nns 32 1028 261 350.9 564.6

19/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

20/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

I/O Mechanisms

read and write operations use a cache mechanism (page cache)

• For each call to read or write, data is kept in the page cache at
the kernel level

• User doesn’t know when data is “really” written to disk (unless by
explicit synchronization)

• User has no control on the size of the page cache

• The page cache is usually managed with a LRU scheme

In our context, page cache can be dangerous.

• I/O may not have the same speed
(depending on whether disk is accessed
or not)

• The kernel may dramatically slowdown
the performance of I/O’s.

Main memory

Disk

Swap may occure

⇒ Use of direct I/O mechanisms

21/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

I/O Mechanisms

read and write operations use a cache mechanism (page cache)

• For each call to read or write, data is kept in the page cache at
the kernel level

• User doesn’t know when data is “really” written to disk (unless by
explicit synchronization)

• User has no control on the size of the page cache

• The page cache is usually managed with a LRU scheme

In our context, page cache can be dangerous.

• I/O may not have the same speed
(depending on whether disk is accessed
or not)

• The kernel may dramatically slowdown
the performance of I/O’s.

Main memory

Disk

Swap may occure

⇒ Use of direct I/O mechanisms

21/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

I/O Mechanisms

read and write operations use a cache mechanism (page cache)

• For each call to read or write, data is kept in the page cache at
the kernel level

• User doesn’t know when data is “really” written to disk (unless by
explicit synchronization)

• User has no control on the size of the page cache

• The page cache is usually managed with a LRU scheme

In our context, page cache can be dangerous.

• I/O may not have the same speed
(depending on whether disk is accessed
or not)

• The kernel may dramatically slowdown
the performance of I/O’s.

Main memory

Disk

Swap may occure

⇒ Use of direct I/O mechanisms

21/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Direct I/O scheme

Advantages:
• Data is directly written to disk (data is not copied in the page

cache)
• Very efficient I/O operations

Drawbacks:
• A disk access is made at each call to read or write
• Data needs to be aligned in memory

Direct I/O scheme ⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Factorization time (seconds)

Direct I/O Direct I/O P.C. P.C. in-core
Sync. Async. Sync. Async.

AUDIKW 1 2417.1 2217.3 2260.8 2211.3 2126.4
CONESHL MOD 995.6 967.2 979.2 953.6 930.4
CONV3D64 10826.9 7599.4 8078.4 7981.6 -
ULTRASOUND80 1446.9 1389.8 1436.4 1377.3 1382.5

22/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Direct I/O scheme

Advantages:
• Data is directly written to disk (data is not copied in the page

cache)
• Very efficient I/O operations

Drawbacks:
• A disk access is made at each call to read or write
• Data needs to be aligned in memory

Direct I/O scheme ⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Factorization time (seconds)

Direct I/O Direct I/O P.C. P.C. in-core
Sync. Async. Sync. Async.

AUDIKW 1 2417.1 2217.3 2260.8 2211.3 2126.4
CONESHL MOD 995.6 967.2 979.2 953.6 930.4
CONV3D64 10826.9 7599.4 8078.4 7981.6 -
ULTRASOUND80 1446.9 1389.8 1436.4 1377.3 1382.5

22/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Direct I/O scheme

Advantages:
• Data is directly written to disk (data is not copied in the page

cache)
• Very efficient I/O operations

Drawbacks:
• A disk access is made at each call to read or write
• Data needs to be aligned in memory

Direct I/O scheme ⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Factorization time (seconds)

Direct I/O Direct I/O P.C. P.C. in-core
Sync. Async. Sync. Async.

AUDIKW 1 2417.1 2217.3 2260.8 2211.3 2126.4
CONESHL MOD 995.6 967.2 979.2 953.6 930.4
CONV3D64 10826.9 7599.4 8078.4 7981.6 -
ULTRASOUND80 1446.9 1389.8 1436.4 1377.3 1382.5

22/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Direct I/O scheme

Advantages:
• Data is directly written to disk (data is not copied in the page

cache)
• Very efficient I/O operations

Drawbacks:
• A disk access is made at each call to read or write
• Data needs to be aligned in memory

Direct I/O scheme ⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Time for solution step (Qimonda07 matrix)

Forward Backward

Direct I/O (Demand-driven) 1149.2 1279.2
Direct I/O (Look-ahead) 174.0 183.7
P.C. (Demand-driven) 186.4 207.7

22/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Outline

Multifrontal method

out-of-core factorization step

out-of-core solution step

Operating system I/O mechanisms

Direct I/O

Conclusion and Future work

23/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Conclusion

• Implementation of an out-of-core extension of MUMPS.
◦ Available to the community since two years.
◦ 2 PhD thesis in this context.
◦ Everything has not been made available to the users yet.

• What still has to be integrated?
◦ Direct I/O scheme.
◦ I/O driven scheduling for solution step.
◦ ...

• Out-of-core related features.
◦ 64-bit addressing for internal arrays.
◦ Communication buffer size reduction.
◦ Interleaved I/O operations (with computations) for the processing of

frontal matrices.

24/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

Future work

• Design and study memory scalable algorithms with a good
performance behaviour.

å In the continuation of Emmanuel’s thesis.
å François-Henri will work on this topic.

• Improve the out-of-core API.

• Do we need to go further? (we hope so)
◦ Out-of-core dynamic memory management.
◦ Integration of the I/O minimizing algorithms (and their adaptation to

the parallel context).
◦ ...

25/25 Abdou Guermouche, MUMPS Users Group Meeting, April 2010

	Context
	Multifrontal method
	out-of-core factorization step
	out-of-core solution step
	Operating system I/O mechanisms
	Direct I/O

	Conclusion and Future work

