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Sparse direct solvers: the three phases

The solution of a sparse system
with the MUMPS solver is
achieved in three phases:

1. The Analysis phase
◦ Fill-reducing pivot order
◦ Symbolic factorization
◦ Scaling
◦ Amalgamantion
◦ Mapping
◦ ...

2. The Factorization phase
◦ LU = PA

3. The Solve phase
◦ Forward/backward substitutions
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Towards a Parallel Analysis
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An approach to parallelization of the analysis

Briefly:

Problem: the sequential analysis of very large scale problems can
be expensive

• memory consumption
• time to completion

Solution: parallelization of the analysis

1. Parallel ordering of the problem using an external
tool such as PT-SCOTCH or ParMETIS on
struct(A + AT )

2. Parallel symbolic factorization based on quotient
graphs and restarting techniques
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4/28 A. Buttari and B. Uçar, MUMPS Users Group Meeting, April 2010



An approach to parallelization of the analysis

Briefly:

Problem: the sequential analysis of very large scale problems can
be expensive

• memory consumption
• time to completion

Solution: parallelization of the analysis

1. Parallel ordering of the problem using an external
tool such as PT-SCOTCH or ParMETIS on
struct(A + AT )

2. Parallel symbolic factorization based on quotient
graphs and restarting techniques
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Pahse1: parallel ordering

ParMETIS
• nested dissection stops at NP subdomains

• works only on 2k processors

• quality of ordering degrades NP

• fast
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Pahse1: parallel ordering

PT-SCOTCH
• nested dissection does not stop at NP

subdomains

• works on any number of processors

• quality of ordering is independent from NP

• a bit slower
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Pahse1: parallel ordering

Both
• get a distributed graph in input

• return an ordering and a separators tree
on output
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Parallel ordering and symbolic facto

1 – First pass adjacency graph of the matrix to a parallel ordering tool
(PT-SCOTCH or ParMetis). As a result, a pivotal order and a
binary separators tree are returned
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Parallel ordering and symbolic facto

2 – Then each processor separately performs the symbolic elimination
of the variables contained in a subtree. This symbolic factorization
is based on the usage of quotient graphs with a restarting
technique that mixes left and right looking factorization methods
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Parallel ordering and symbolic facto

3 – The host processor eliminates the variables in the top part of the
tree using the same technique
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Parallel ordering and symbolic facto

4 – The distributed data are merged into a centralized data structure
that is used in subsequent steps of the analysis phase like
amalgamation, mapping etc.
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Parallel ordering and symbolic facto

• Quotient graphs
◦ keep the cost limited to O(nnz) thanks to techniques like nodes

absorption and redundant edges elimination
◦ ease the coupling between bottom and top part since the result of the

symbolic facto on the subdomains can be represented as a clique in
the quotient graph of the top-tree

• Restarting

1. in pivotal steps 1, ..., τ are processed and only
the adjacency information for variables 1− τ is
updated in a right-looking way

2. restart: the adjacency information of variables
τ − n is updated with respect to elements
1− τ in a left-looking way

3. apply steps 1 and 2 recursively on variables
τ − n
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NICE-7: N=8159758, NNZ=669172552
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BRGM: N=3699643, NNZ=307580395
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CONESHL: N=1262212, NNZ=84753352
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10millions: N=10423737, NNZ=167722005
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BRGM: ParMETIS vs PT-SCOTCH

• Better ordering with PT-SCOTCH

• ParMETIS faster than PT-SCOTCH

• ParMETIS ordering degrades with increasing parallelism
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Parallel analysis: interface

The behavior of the parallel analysis is defined by two parameters:

ICNTL(28) Analysis type:

• 0: Automatic decision (always =1 for the moment)
• 1: Sequential analysis
• 2: Parallel analysis

ICNTL(29) Ordering method for the parallel analysis

• 0: Automatic decision (always =1 for the moment)
• 1: PT-SCOTCH
• 2: ParMetis
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Parallel analysis: interface
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Parallel Scaling
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Matrix scaling

Definition

Given an m × n sparse matrix A, find diagonal matrices D1 > 0 and
D2 > 0 such that all rows and columns of the scaled matrix

Â = D1AD2

have equal norm.

Motivations

• Good pivoting strategy, numerical/optimal properties.

• Scaling combined with permutations can avoid many numerical
difficulties [Duff and Pralet, SIMAX(2005)] during LU factorization:
◦ Provides (weak) diagonal dominance,
◦ Increases robustness of the factorization algorithms,
◦ May improve the condition number.
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The sequential algorithm (Ruiz 2001)

1: D1
(0) ← Im×m D2

(0) ← In×n

2: for k = 1, 2, . . . until convergence do

3: DR ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: DC ← diag
(√
‖cj

(k)‖`
)

j = 1, . . . , n

5: D1
(k+1) ← D1

(k) DR
−1

6: D2
(k+1) ← D2

(k) DC
−1

7: A(k+1) ← D1
(k+1)AD2

(k+1)

8: end for

Reminder

‖x‖∞ = max{|xi |}
‖x‖1 =

∑
|xi |

Notes

`: any vector norm (usually ∞- and 1-norms)
Convergence is achieved when

max
1≤i≤m

{
|1− ‖ri (k)‖`|

}
≤ ε and max

1≤j≤n

{
|1− ‖cj

(k)‖`|
}
≤ ε
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Features

Some properties (Ruiz 2001)

• Preserves symmetry; permutation independent; amenable to
parallelization,

• With ∞-norm, linear convergence with asymptotic rate of 1/2,

• With 1-norm, results are similar to those of the other well-known
algorithms; convergence under certain conditions.

Practical considerations

• Numerical tests toward investigating the effects on LU decomposition,
preconditioning [Duff and Pralet, SIMAX(2005)],

• Sequential codes also available in HSL library as MC77 [Ruiz (2001)],

• Parallel codes have been plugged into MUMPS.
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Parallelization: Data distribution

Data: Â
(k)
, A, D1

(k) D2
(k), DR and DC.

The scaled matrix Â(k)

Do not store Â
(k)

= D1
(k)AD2

(k) explicitly; access aij
(k) by

d1
(k)(i)× |aij | × d2

(k)(j)

• Distribute A,D1, and D2. At every iteration DR and DC are
computed afresh.
◦ Matrix A is already distributed (in another context).

Each processor holds a set of entries aij and their indices (i , j).
◦ Partition the diagonal elements of D1 and D2 among processors.

Problem definition

Given a partition on A, find the best partitions for D1 and D2.
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Parallelization: Dependencies

Local computations

Each processor p should use each (i , j , aij) triplet to compute partial
results on dR(i) and dC (j), e.g., in ∞-norm, sets

dR
p(i) = max

{
d1

(k)(i)× |aij | × d2
(k)(j) : aij ∈ p

}

Communication operations

The partial results should be combined/reduced for each d1
(k+1)(i).

The owner of d1(i) should set, in ∞-norm,

d1
(k+1)(i) = d1

(k)(i)× 1√
max{dR

p(i) : 1 ≤ p ≤ P}
.

The owner should send d1
(k+1)(i) back to the contributing processors.

• Similar discussion for d2(j).
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Parallelization: ∞-norm algorithm for step k

i

j

1

1

2 2 2

3

44

Row ri

Processors 2 and 4 contribute to
d1

(k+1)(i). Whichever owns d1(i),
receives one unit of data and sends
one unit of data after computing the
final d1

(k+1)(i).

Column cj

Processors 1, 2, and 3 contribute to
d2

(k+1)(j). Whichever owns d2(j),
receives two units of data and sends
two units of data after computing
the final d2

(k+1)(j).
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Parallelization: Communication requirements

Common communication cost metric: the total volume.

Communication for D1

• The volume of data a processor receives while reducing a d1
(k+1)(i)

is equal to the volume of data it sends after computing d1
(k+1)(i).

• Nonzeros in row ri are split among sr (i) processors
◦ All contribute to d1

(k+1)(i).
◦ Reduction on sr (i) partial results.
◦ If one of those sr (i) processors owns d1(i), sr (i)− 1 partial results will

be send to the owner.
◦ If owned by somebody else, then sr (i) partial results will be send to

the owner.

Communication for D2

Similar observations.
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Parallelization: Partitioning D1 and D2

Communication requirements

Nonzeros in row ri are split among sr (i) processors: total volume of
communication is equal to

2×
∑

(sr (i)− 1)

(half for receiving contributions, half for sending back the results).

• The total volume of communication is the same for any d1(i) to
processor assignment as long as that processor has at least one
nonzero from row ri .

Similar observation for the column cj .

Twice the requirements of parallel sparse matrix-vector multiply
operation.
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Computations and communication requirements

Computations (per iteration)

Op. SpMxV 1-norm ∞-norm

add nnz(A) 2× nnz(A) 0
mult nnz(A) 2× nnz(A) + m + n 2× nnz(A) + m + n

comparison 0 0 2× nnz(A)

Communication (per iteration)

The communication operations both in the 1-norm and ∞-norm
algorithms are the same as those in the computations

y← Ax
x← ATy

when the partitions on x and y are equal to those on D2 and D1.
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Parallelization: Our partitioning approach

What we did?

• Use simple strategies while ensuring that each scaling entry is assigned to
a processor that contributes to that entry.

d1(i) assigned to the processor p that has an entry aij with j giving
min{|i − j |}; in case of ties to the processor with the smallest rank.

d2(j) assigned to the processor p that has an entry aij with i giving
min{|i − j |}; in case of ties to the processor with the smallest rank.

What could be done?

The freedom can be used to optimize some other metrics [U. and Aykanat,
SISC(2004); Bisseling and Meesen, ETNA(2005)].

• Communication cost: Minimize number of messages, maximum
volume/message per processor.

• Balance the number of d1(i) and/or d2(j) per processor.
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Parallelization results: Speedup values

Seq. Number of processors
matrix Time (s.) 2 4 8 16

aug3dcqp 8.30 1.7 2.9 4.1 4.5
3.06 1.9 3.8 4.3 3.6

a2nnsnsl 20.71 1.8 3.1 4.0 4.8
7.24 1.5 1.8 2.1 3.3

a0nsdsil 20.92 1.8 3.1 4.0 4.6
7.22 1.5 1.8 2.1 3.2

lhr71 78.25 2.0 3.8 7.3 13.5
18.10 2.0 3.4 6.8 14.0

G3 circuit 455.25 1.8 3.8 7.4 14.0
173.11 1.9 3.3 6.9 14.5

thermal2 573.24 2.0 3.9 7.6 14.4
208.20 1.6 3.4 6.5 13.1

• Averages of 10
different partitions
(with PaToH
[Çatalyürek and
Aykanat, Tech.Rep
(1999)]),

• PC cluster with a
Gigabit Ethernet
switch (Intel
Pentium IV 2.6
GHz), PC cluster
with an Infiniband
interconnect (dual
150 Opteron AMD
processors)

Best three and worst three speedup values are shown—speedup tends
to be higher with larger number of nonzeros.
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Settings in MUMPS and some numerical results

Default behavior (ICNTL(8)=7)

One ∞-norm scaling, three 1-norm scaling.

Behaved better than a number of alternatives (among about 700
matrices, without scaling for 46 matrices parameter ICNTL(14) had
to be adjusted; with this setting for 15 matrices).

Typically reduces the number of delayed pivots and off-diagonal
pivoting, and hence reduces the memory requirements

Flops #entries in factors (×106)
(×106) estimated effective

scaling OFF ON OFF ON OFF ON

C-54 281 209 1.42 1.42 1.76 1.58
a0nsdsil 7.7 2.5 0.42 0.42 0.57 0.42
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Conclusions

Thank you.

Parallel analysis and scaling are good ¨̂
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