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INTRODUCTION



HPDDM

e open-source, https://github.org/hpddm/hpddm
e handles (optimized) Schwarz or substructuring methods,

e provides adaptive coarse space constructions,

e interfaced with MUMPS, PaStiX, PARDISO, Dissection,
SuiteSparse, BoomerAMG,

e interfaced with LAPACK and ARPACK,

e can be used with FreeFem++, Feel++, or as is in C, C++,
Python or Fortran.


https://github.org/hpddm/hpddm

DS(E)L FOR FE METHODS

Solving Laplace's equation with Feel++

auto mesh = loadMesh(_mesh = new < <2>>);
auto Vh = <2>(mesh) ;
auto u = Vh->element(), v = Vh->element();
auto f = expr("2*x*y+cos(y):x:y");
// a(u,v)= [ Vu-Vv
Q
auto a = form2(_trial = Vh, _test = Vh);
a = integrate(_range = elements(mesh),

_expr = gradt(u) * trans(grad(v)));
/7 /(v):/ v

auto 1 = forml(_test Vh) ;

1 = integrate(_range elements (mesh),
_expr = f * id(v));

// u=0 on 0N

a += on(_range = boundaryfaces(mesh),
_rhs =1, _element = u,

_expr = cst(0.0));
a.solve(_rhs = 1, _solution = u);




OVERLAPPING SCHWARZ METHODS

Consider the linear system: Au =f € K".
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OVERLAPPING SCHWARZ METHODS

Consider the linear system: Au =f € K".

Given a decomposition of [1;n], (N1, N2), define:
e the restriction operator R; from [1;n] into N,

e R’ as the extension by O from N into [1;n].

Then define:

o,
u=Ru A;=RAR]. &




OVERLAPPING SCHWARZ METHODS

Duplicated unknowns coupled via a partition of unity:

N 1
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OVERLAPPING SCHWARZ METHODS

Duplicated unknowns coupled via a partition of unity:

N 1
/ - Z RITD,R, 1
i=1 2
N N
Then, u™t = Z RIDum™t. Mzas = Z RIDA;'R;

i=1 i=1

[Cai and Sarkis 1999]



SUBSTRUCTURING PRECONDITIONERS
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SUBSTRUCTURING PRECONDITIONERS
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SUBSTRUCTURING PRECONDITIONERS
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[Gosselet and Rey 2006]

Elimination of interior d.o.f.
S® = App — AnAi A



SUBSTRUCTURING PRECONDITIONERS
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SUBSTRUCTURING PRECONDITIONERS
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[Farhat and Roux 1991]



LIMITATIONS OF ONE-LEVEL METHODS

One-level methods don't require exchange of global
information.



LIMITATIONS OF ONE-LEVEL METHODS

One-level methods don't require exchange of global
information.

This hampers numerical scalability of such preconditioners:

_ 1 H
K(MA) < CW (1 + 3)

* level of overlap 6,

e characteristic size of a subdomain H.

[Le Tallec 1994 Toselli and Widlund 2005]
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TWO-LEVEL PRECONDITIONERS

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary “coarse” problem.

Let Z be a rectangular matrix. Define
E=Z7'AZ

Z has O(N) columns, hence E is much smaller than A.



TWO-LEVEL PRECONDITIONERS

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary “coarse” problem.

Let Z be a rectangular matrix. Define
E=Z7'AZ

Z has O(N) columns, hence E is much smaller than A.
Enrich the original preconditioner, e.g. additively

pt=m1tyzelZT,

cf. [Tang et al. 2009].



COMPUTING A COARSE OPERATOR CORRECTION

How to apply ZE-1ZT tou € K" ?
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COMPUTING A COARSE OPERATOR CORRECTION

How to apply E-'ZTtou € K" 7
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operations & MPI_Gather + linear solve




COMPUTING A COARSE OPERATOR CORRECTION

How to apply ZE-1ZT tou € K" ?

ZTu= b~ :mm<<n XH:

E-17Ty = \ H = H =ZE17Ty

operations & MPI_Gather + linear solve + MPI_Scatter & operations



NUMERICAL RESULTS




MACHINES USED FOR SCALING RUNS

Curie Thin Nodes

e 5040 compute nodes (2 eight-core Intel Sandy Bridge).
e |B QDR full fat-free.

uing

e 6 BlueGene/Q racks.

PRACE

= GENCI

GRAND EQUIPEMENT NATIONAL DE CALCUL INTENSIF



STRONG SCALING (STOKES' EQUATION)

1 subdomain/MPI process, ——ranks-per-node = 8.
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BLOCK LOW-RANK APPROXIMATIONS
Motivation

During setup, lot of time spent in the direct solver.

n



BLOCK LOW-RANK APPROXIMATIONS

1 subdomain/MPI process, 2 OpenMP threads/MPI process.
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DIFFUSION EQUATION

LLT factorization (430k d.o.f.)
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STOKES' EQUATION

LDLT factorization (503k d.o.f.)
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SOLUTION PHASE WITH MULTIPLE RIGHT-HAND SIDES
Motivation

DD preconditioner for fomographic imaging.

V x (V xE)—uO(w2€—|—iw0)E:0




SCALABILITY OF THE PRECONDITIONER
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STOKES' EQUATION (LU FACTORIZATION)
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MAXWELL'S EQUATION (LDL" FACTORIZATION)

_ p-Ti1
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Epp

1 2 4 8 16 32 64 128
# of right-hand sides (p) 18



BLOCK METHODS FOR MAXWELL'S EQUATION

alternative p  solve H# of it. per RHS eff.

GMRES 1
GCRO-DR 1

e (m,k) = (50,10) for solving 32 RHSs
e 2048 subdomains and 2 threads per subdomain
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BLOCK METHODS FOR MAXWELL'S EQUATION

alternative p  solve H# of it. per RHS eff.
GMRES 1 30784 20068 627 =

GCRO-DR 1 18369 10701 334 1.7

BGMRES 32  724.8 158 = 4.2
BGCRO-DR 8 677.6 524 131 4.5
BGCRO-DR 32  992.3 127 — 3.1

(m, k) = (50,10) for solving 32 RHSs
2 048 subdomains and 2 threads per subdomain

alternative #1 to #5 — 158 x fewer iterations
working on all 32 RHSs is costly (#4 vs. #5)

19



FEATURES AND WHISH LIST




SUMMARY OF USED FEATURES

e LU, LDLT

e distributed or centralized solution

e BLR

e multiple RHS

e detection of pivots and size of nullspace
e computation of Schur complement

e working host/distributed input

20



WHISH LIST

e distributed RHS

e cfficient handling of block matrices
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WHISH LIST

e distributed RHS

e efficient handling of block matrices

Thank you for MUMPS
and for your attention!
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