MUMPS ON THOUSANDS OF CORES: FEEDBACK ON THE USE OF DIRECT SOLVERS IN DDM

Pierre Jolivet, IRIT-CNRS

MUMPS User Days June 2

INTRODUCTION

- open-source, https://github.org/hpddm/hpddm
- handles (optimized) Schwarz or substructuring methods,
- provides adaptive coarse space constructions,
- interfaced with MUMPS, PaStiX, PARDISO, Dissection, SuiteSparse, BoomerAMG,
- interfaced with LAPACK and ARPACK,
- can be used with FreeFem++, Feel++, or as is in C, C++, Python or Fortran.

Solving Laplace's equation with Feel++

```
auto mesh = loadMesh(_mesh = new Mesh<Simplex<2>>);
auto Vh = Pch<2>(mesh):
auto u = Vh->element(), v = Vh->element();
auto f = expr("2*x*y+cos(y):x:y");
// a(u,v) = \int_{-\infty} \nabla u \cdot \nabla v
auto a = form2( trial = Vh, test = Vh);
a = integrate(_range = elements(mesh),
         _expr = gradt(u) * trans(grad(v)));
// l(v) = \int fv
auto l = form1( test = Vh);
l = integrate(_range = elements(mesh),
         expr = f * id(v);
// u = 0 on \partial \Omega
a += on( range = boundaryfaces(mesh),
         _rhs = 1, _element = u,
        expr = cst(0.0);
a.solve(_rhs = 1, _solution = u);
```

Consider the linear system: $Au = f \in \mathbb{K}^n$.

Consider the linear system: $Au = f \in \mathbb{K}^n$. Given a decomposition of $[\![1; n]\!]$, $(\mathcal{N}_1, \mathcal{N}_2)$, define:

- the restriction operator R_i from $\llbracket 1; n \rrbracket$ into \mathcal{N}_{i_i}
- R_i^T as the extension by 0 from \mathcal{N}_i into $[\![1;n]\!]$.

Consider the linear system: $Au = f \in \mathbb{K}^n$. Given a decomposition of $[\![1;n]\!]$, $(\mathcal{N}_1, \mathcal{N}_2)$, define:

- the restriction operator R_i from $\llbracket 1; n \rrbracket$ into \mathcal{N}_i ,
- R_i^T as the extension by 0 from \mathcal{N}_i into $[\![1;n]\!]$.

Then define:

$$u_i = R_i u$$
 $A_{ij} = R_i A R_j^T$.

Duplicated unknowns coupled via a partition of unity:

Duplicated unknowns coupled via a partition of unity:

Duplicated unknowns coupled via a partition of unity:

[Gosselet and Rey 2006]

Subdomain tearing

[Gosselet and Rey 2006]

 $4_{b}^{(2)}$ $3_{b}^{(3)}$ $2_{b}^{(2)}$ $3_{b}^{(2)}$ $1_{b}^{(2)}$ 2,3 $2_{b}^{(1)}$ $3_{b}^{(1)}$ $1_{b}^{(1)}$ $1_{b}^{(3)}$ $4_{b}^{(1)}$

Elimination of interior d.o.f. $S^{(k)} = A_{bb} - A_{bi}A_{ii}^{-1}A_{ib}$

Jump operators: $\{B^{(i)}\}_{i=1}^3$

Primal constraints [Mandel 1993]

[Farhat and Roux 1991]

One-level methods don't require exchange of global information.

One-level methods don't require exchange of global information.

This hampers numerical scalability of such preconditioners:

$$\kappa(M^{-1}\mathsf{A}) \leqslant C \frac{1}{H^2} \left(1 + \frac{H}{\delta} \right)$$

- level of overlap δ ,
- characteristic size of a subdomain *H*.

[Le Tallec 1994; Toselli and Widlund 2005]

TWO-LEVEL PRECONDITIONERS

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary "coarse" problem.

Let Z be a rectangular matrix. Define

$$E = Z^T A Z.$$

Z has $\mathcal{O}(N)$ columns, hence E is much smaller than A.

A common technique in the field of DDM, MG, deflation:

introduce an auxiliary "coarse" problem.

Let Z be a rectangular matrix. Define

$$E = Z^T A Z.$$

Z has $\mathcal{O}(N)$ columns, hence E is much smaller than A. Enrich the original preconditioner, e.g. additively

$$P^{-1} = M^{-1} + Z E^{-1} Z^{\mathsf{T}},$$

cf. [Tang et al. 2009].

How to apply $ZE^{-1}Z^T$ to $u \in \mathbb{K}^n$?

operations & MPI_Gather

How to apply $E^{-1}Z^T$ to $u \in \mathbb{K}^n$?

operations & MPI_Gather + linear solve

operations & MPI_Gather + linear solve + MPI_Scatter & operations

NUMERICAL RESULTS

Curie Thin Nodes

- 5 040 compute nodes (2 eight-core Intel Sandy Bridge).
- IB QDR full fat-tree.

Turing

• 6 BlueGene/Q racks.

STRONG SCALING (STOKES' EQUATION)

1 subdomain/MPI process, --ranks-per-node = 8.

Motivation

During setup, lot of time spent in the direct solver.

BLOCK LOW-RANK APPROXIMATIONS

Runtime (seconds)

1 subdomain/MPI process, 2 OpenMP threads/MPI process.

DIFFUSION EQUATION

STOKES' EQUATION

LDL^{T} factorization (503k d.o.f.)

SOLUTION PHASE WITH MULTIPLE RIGHT-HAND SIDES Motivation

DD preconditioner for tomographic imaging.

$$\nabla \times (\nabla \times \mathbf{E}) - \mu_0 \Big(\omega^2 \varepsilon + \mathrm{i} \omega \sigma \Big) \mathbf{E} = 0$$

SCALABILITY OF THE PRECONDITIONER

- 119 million double-precision complex unknowns
- degree 2 edge elements

STOKES' EQUATION (LU FACTORIZATION)

$$E_{P,p} = \frac{p \cdot T_{1,1}}{P \cdot T_{P,p}}$$

MAXWELL'S EQUATION (LDL^T FACTORIZATION)

$$E_{P,p} = \frac{p \cdot T_{1,1}}{P \cdot T_{P,p}}$$

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1				
GCRO-DR	1				

- (m,k) = (50,10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	3078.4	20068	627	—
GCRO-DR	1	1836.9	10701	334	1.7

- (m, k) = (50, 10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
	1	2078 /	20.068	697	
GIVIRES	T	5010.4	20 000	027	_
GCRO-DR	1	1836.9	10701	334	1.7
BGMRES	32	724.8	158	—	4.2

- (m,k) = (50,10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	3078.4	20068	627	—
GCRO-DR	1	1836.9	10701	334	1.7
BGMRES	32	724.8	158	—	4.2
BGCRO-DR	8	677.6	524	131	4.5

- (m, k) = (50, 10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	3078.4	20068	627	—
GCRO-DR	1	1836.9	10701	334	1.7
BGMRES	32	724.8	158	—	4.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	_	3.1

- (m, k) = (50, 10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	3078.4	20068	627	—
GCRO-DR	1	1836.9	10701	334	1.7
BGMRES	32	724.8	158	—	4.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	_	3.1

- (m,k) = (50,10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain
- alternative #1 to #5 \implies 158× fewer iterations

alternative	р	solve	# of it.	per RHS	eff.
GMRES	1	3078.4	20068	627	—
GCRO-DR	1	1836.9	10701	334	1.7
BGMRES	32	724.8	158	—	4.2
BGCRO-DR	8	677.6	524	131	4.5
BGCRO-DR	32	992.3	127	_	3.1

- (m, k) = (50, 10) for solving 32 RHSs
- 2048 subdomains and 2 threads per subdomain
- alternative #1 to #5 \implies 158× fewer iterations
- working on all 32 RHSs is costly (#4 vs. #5)

FEATURES AND WHISH LIST

- LU, LDL^{T}
- distributed or centralized solution
- BLR
- multiple RHS
- detection of pivots and size of nullspace
- computation of Schur complement
- working host/distributed input

- distributed RHS
- efficient handling of block matrices

- distributed RHS
- efficient handling of block matrices

Thank you for MUMPS and for your attention!