

1a. EDF Group: a European Electricity Utility with strong R&D involvment

1b. Operation, Maintenance & Optimization of complex systems at EDF

- Permanent objectives
 - ✓ Guarantee safety,
 - ✓ Improve performances/costs,
 - ✓ Maintain assets.
- Changing operating conditions
 - ✓ Face unexpected events, ageing issues, maintenance,
 - Improve performance through new technologies, new operating modes and system-wide optimization,
 - ✓ Adapt to evolving sets of rules (safety, environment, regulatory).

In-house technical backing

 ✓ Expertise: strong Engineering and R&D divisions,

 ✓ Physical testing and simulation are key tools from the outset.

1c. EDF R&D worldwide presence

R&D Partners

support

International academic

• Major international

Common laboratories

partnerships

& institutes

bodies

National research

PMAA 2016 | 4

1d. Examples of needs for numerical simulations

2c. Question: Is it a good idea to use external libraries ?

- Search of optimal performances
 - ✓ Trade-off between CPU times/
 - RAM consumption/stability/robustness,
 - $\checkmark\,$ We would probably implement less efficient algorithms.
- Ecomical reasons
 - $\checkmark\,$ Fewer codes that are not 'core business',
 - ✓ Collection of tremendous know-how.
- Pragmatism and QA management
 - ✓ Share feedback,
 - \checkmark Good pratices.
- Use a well-known package
 - ✓ Share risks,
 - $\checkmark\,$ To find other partnerships,
 - ✓ To find trained applicants/users.

MUMPS

Metis/Scotch, Scalapack...

PETSc

ARPACK

2d. Our answer: yes, when it's possible ! Mainly based on MUMPS (& PETSc)

MUMPS>EDF:

- Numerical expertise,
- Tips and tricks.

First annual Consortium Committee Meeting March 12, 2015 at EDF, Clamart, France

2e. Our answer: in order to provide a wide range of strategies

- ✓ Out-Of-Core and compression facilities,
- ✓ Preconditioner tools (non linear studies).

MUD2017 | 11

Reactor building model

3b. MUMPS: framework of parallelism

Pros

- ✓ Robust, all-purpose and user-friendly,
- ✓ Can be easily used in more ambitious frame:
 - » Preconditioners (ex: PETSc+MUMPS).
 - » MPI+OpenMP (ex: MUMPS+BLAS),
 - » spectrum slicing (ex: ARPACK+MUMPS).

- Cons
 - ✓ Medium range (<1000 cores),
 - ✓ Not totally scalable (efficiency between 0.2 and 0.5),
 - ✓ Need of memory (RAM/disk),
 - ✓ Need of large enough problem size,

4a. Benchmark MUMPS versus MKL-PARDISO

- LOCA studies: 'Loss of Coolant Accident'
 - Lagrange multipliers: Links between fluid and structure meshes,
 - ✓ Multitude of local and global very small linear systems,
 - ✓ Different strategies: local/global systems, direct (CHOL, PARD)/iterative linear solvers (GPCG, SPLI) ...
- Linear solver benchmark:
 - ✓ CHOL, PARD(OPT), MUMPS.
 - ✓ MUMPS: fallback position to PARDISO.
 - ✓ Useless here: BLR, threads.
- Speed-up of this EDF'study: X7 (PARD_OPT/MUMPS versus CHOL): 20 days.

4d. Parallelism in MUMPS

4f. Very large models: selective 64-bits integers

Performance test-cases

Perf002c (#dof=58M) FR_parmetis=51min LR parmetis=29min

Perf008a (#dof=31M) FR_metis=2h9min LR metis=47min

Perf008a (#dof=39M)

FR_parmetis=14min

LR parmetis=18min

MISFORTUNE PROBLEM FAILURE OBSTRUCTION MISHAP DIFFICULTY

24 nodes EOLE 256/512Go One full MUMPS solve

Industrial study stuck until now •

Steel subjected to corrosion (pressuriser) Polycristal model #dof=10M (unsymmetric) #NNZ=2011M FR_parmetis=29min LR parmetis=23min MUD2017 | 19

4g. Large eigenvalue computation: ARPACK+MUMPS

- Fluid-structure interactions in water tank of nuclear power plant
 - ✓ Thin structure > extended eigenvector basis,
 - ✓ Computation of 6100 eigenvalues/vectors (#dof=50000).
- Three level parallelism scheme
 - ✓ Spectrum slicing with MPI and ARPACK,
 - ✓ MPI in MUMPS,
 - ✓ Threads in BLAS.

4h. Large electromagnetic computation

- 3D non linear study of a turbo-alternator •
 - ✓ Newton non linear algorithm,
 - ✓ 17M Tetrahedra,
 - ✓ #dof=8M,
 - ✓ Thousands of linear systems to solve
 - ✓ Each MUMPS computation: 10min (4.5min for analysis)

In test

- ✓ BLR compression,
- ✓ MUMPS as a preconditioner,
- ✓ Mutualization of the tangent stiffness matrix between Newton steps.

5. Conclusion and perspective

- Daily use of MUMPS/PETSc in EDF's *in-house* codes ('best-inclass' tools).
- 11-year fruitful and win-win partnership EDF-MUMPS,
- In EDF codes context, to achieve quicker and bigger computations:
 - ✓ Direct solver: BLR variants, coupled with MPI-OpenMP and OOC,
 - avoid of refactoring, management of Lagrange multipliers...
 - ✓ Hybrid algebraic linear solvers: MaPHyS, ABCD_Solver...
 - Better use of preconditioner: BLR double precision with strong compression, multigrid, DD...
- Links « in-house code » « linear algebra package » needs steady adjustments. Often, questioning about external libraries induces improvment in the caller code.

MAKE
DIRECT SOLVER
GREAT AGAIN!

....

Thank you for you attention !

