Recent advances on the solution phase of direct solvers with multiple sparse right-hand sides

P. Amestoy¹, J.-Y. L'Excellent², <u>G. Moreau²</u>

1. Université de Toulouse INPT and IRIT , 2. Université de Lyon, Inria and LIP-ENS Lyon , gilles.moreau@ens-lyon.fr

Mumps User's Days, Montbonnot, June 1-2 2017

Linear systems of equations : Ax = b, A is sparse Solve phase (Ly = b, Ux = y) may be critical.

Application coming from Helmholtz or Maxwell equations:

name	n (million)	nrhs	nnz/nrhs	T _{facto}	T _{solve}
sei70m	2.9	2302	587	1258	1267
sei50m	7.1	2302	486	6289	2985
E1	0.33	8000	9.8	55.2	291
E3	2.8	8000	7.5	1951	5610

Table: Characteristics of matrices and right-hand-sides.

Objectives:

- focus on the forward solution phase Ly = b;
- exploit sparsity of right-hand-sides;
- limit the number of operations (Δ) ;

Exploitation of sparse right-hand-sides Context of study Tree pruning Exploitation of subintervals of columns at each node

Minimizing the number of operations Permutation of columns Adapted blocking technique

Conclusion

• Nested Dissection \Rightarrow build tree of separators.

3D physical domain (cube)

• Nested Dissection \Rightarrow build tree of separators.

3D physical domain (cube)

separator tree

u₁₅

• Nested Dissection \Rightarrow build tree of separators.

3D physical domain (cube)

separator tree

• Nested Dissection \Rightarrow build tree of separators.

3D physical domain (cube)

separator tree

• Nested Dissection \Rightarrow build tree of separators.

3D physical domain (cube)

separator tree

L factor

• Nested Dissection \Rightarrow build tree of separators.

3D physical domain (cube)

separator tree

L factor

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

Block operations:

- $y_1 \leftarrow L_{11}^{-1}b_1$
- $b_2 \leftarrow b_2 L_{21}y_1$

#flops for node u is given by: $\mathcal{F}_u = 2*(\# ext{entries in } L_{11} + L_{21})$

Total #flops:

$$\Delta = \sum_{u \in T} \mathcal{F}_u$$

Forward solve phase processes the tree from bottom to top:

*u*₁₅

 $(u_5)(u_8)(u_9)(u_{11})(u_{12})$

*u*₁₄

u₁₃

u₁₀

Forward solve phase processes the tree from bottom to top:

Computation follows paths in the tree T [Gilbert, 1994].

 \hookrightarrow **Tree pruning** $(T \to T_p(b))$ to reduce computation:

$$\Delta = \sum_{u \in T_p(b)} \mathcal{F}_u$$

Exposition of padded zeros

When B is a matrix with multiple columns:

- use of BLAS 3 operations for efficiency;
- $T_p(B) = \bigcup T_p(B_i)$, where B_i is column *i* of *B*;

But still, extra computations are done ...

$$\Delta = \mathit{nrhs} imes \sum_{u \in \mathcal{T}_p(B)} \mathcal{F}_u$$

Exposition of padded zeros

When B is a matrix with multiple columns:

- use of BLAS 3 operations for efficiency;
- $T_p(B) = \bigcup T_p(B_i)$, where B_i is column *i* of *B*;

But still, extra computations are done ...

$$\Delta = \mathit{nrhs} imes \sum_{u \in \mathcal{T}_p(B)} \mathcal{F}_u$$

What are the possible alternatives ?

- Indirections: rebuilding data structures;
- Sequential: solution phase on each column \Rightarrow optimal ($\Delta = \Delta_{min}$) but not efficient;
- Regular blocking: how to build blocks ?
 - minimal access to factors (out of core) [Amestoy et al.,SISC,2012];
 - minimal number of operations (in core) [Yamazaki et al.,2013];
- Exploitation of subintervals of columns at each node [Amestoy et al.,SISC,2015].

What are the possible alternatives ?

- Indirections: rebuilding data structures;
- Sequential: solution phase on each column \Rightarrow optimal ($\Delta = \Delta_{min}$) but not efficient;
- Regular blocking: how to build blocks ?
 - minimal access to factors (out of core) [Amestoy et al.,SISC,2012];
 - minimal number of operations (in core) [Yamazaki et al., 2013];
- Exploitation of subintervals of columns at each node [Amestoy et al.,SISC,2015].

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1,\ldots,m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

	1	2	з.	4	5	6
u_1	Х					
u2				Х		
из	f			f		
<i>u</i> 4		×				
u5					Х	
u ₆		f			f	
U7	f	f		f	f	
u ₈	×					×
u ₉						
J ₁₀	f					f
J11			Х			
I 12					×	
J ₁₃			Х		f	
<i>I</i> 14	f		f		f	f
J15	×	f	f	f	\times	f

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1,\ldots,m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

Example: $\theta_{u_1} = 1$, $\theta_{u_{10}} = 6$

	1	2	з.	4	5	6	
u_1	\times						
u ₂				×			
u ₃	f			f			
<i>u</i> 4		×					
u ₅					Х		
<i>u</i> ₆		f			f		
U7	f	f		f	f		
u ₈	×					X	
u ₉							
u10	f					f	
U11			×				
u12					Х		
u ₁₃			Х		f		
<i>u</i> 14	f		f		f	f	
u15	\times	f	f	f	Х	f	

Let $u \in T$:

Active columns at node u

$$Z_u = \{i \in \{1,\ldots,m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

Example: $\theta_{u_1} = 1$, $\theta_{u_{10}} = 6$

$$\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$$

	1	2	3	4	5	6	
u_1	\times						$ \theta_1 = 1$
u_2				×			$\theta_2 = 1$
из	f			f			$\theta_3 = 4$
и4		×					$\theta_4 = 1$
и5					Х		$\theta_5 = 1$
и6		f			f		$\theta_6 = 4$
u7	f	f		f	f		$\theta_7 = 5$
u ₈	\times					X	$\theta_8 = 6$
u ₉							$\theta_{9} = 0$
u ₁₀	f					f	$\theta_{10} = 6$
u ₁₁			\times				$\theta_{11} = 1$
u ₁₂					X		$\theta_{12} = 1$
u ₁₃			\times		f		$\theta_{13} = 3$
u ₁₄	f		f		f	f	$\theta_{14} = 6$
1115	X	f	£	f	X	f	$\theta_{1r} - 6$

Let $u \in T$:

Active columns at node *u*

$$Z_u = \{i \in \{1,\ldots,m\} \mid u \in T_p(B_i)\}$$

Subinterval is given by:

$$\theta_u = \max(Z_u) - \min(Z_u) + 1$$

Example: $\theta_{u_1} = 1$, $\theta_{u_{10}} = 6$

$$\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$$

	1	2	3	4	5	6				1	4	2	5	6	3	
u_1	X						θ_1	=	1	\times						$\theta_1 = 1$
u_2				×			θ_2	=	1		×					$\theta_2 = 1$
из	f			f			θ_3	=	4	f	f					$\theta_3 = 2$
и4		X					θ_4	=	1			X				$\tilde{\theta_4} = 1$
u ₅					X		θ_5	=	1				×			$\theta_5 = 1$
и6		f			f		θ_6	=	4			f	f			$\theta_6 = 2$
u7	f	f		f	f		θ_7	=	5	f	f	f	f			$\theta_7 = 4$
и8	\times					X	θ_8	=	6	\times				×		$\theta_8 = 5$
ug							θ_{9}	=	0							$\theta_{9} = 0$
<i>u</i> ₁₀	f					f	θ_{10}	=	6	f				f		$\theta_{10} = 5$
u ₁₁			\times				θ_{11}	=	1						\times	$\theta_{11} = 1$
u_{12}					X		θ_{12}	=	1				×			$\theta_{12} = 1$
u ₁₃			\times		f		θ_{13}	=	3				f		×	$\theta_{13} = 3$
<i>u</i> 14	f		f		f	f	θ_{14}	=	6	f			f	f	f	$\theta_{14} = 6$
u ₁₅	×	f	f	f	×	f	θ_{15}	=	6	\times	f	f	×	f	f	$\theta_{15} = 6$

 $\hookrightarrow \Delta$ is extremely dependant on column permutation.

Goal is to minimize or decrease $\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$:

- find permutation σ of columns to decrease $\theta_u, \forall u \in T_p(B)$;
- in case of blocking, minimize the number of blocks.

Goal is to minimize or decrease $\Delta = \sum_{u \in T_p(B)} \mathcal{F}_u \times \theta_u$:

- find permutation σ of columns to decrease $\theta_u, \forall u \in T_p(B)$;
- in case of blocking, minimize the number of blocks.

Proposed heuristics:

- based on geometrical properties (Nested Dissection);
- generalization possible thanks to pruned tree $T_p(B)$.

Flat Tree Algorithm

Intuition based on a simple 2D example:

• Nested Dissection \Rightarrow partition right-hand-sides into 3 sets (a, b, c);

•
$$\theta_{u_1} = a + c + b$$

Flat Tree Algorithm

Intuition based on a simple 2D example:

• Nested Dissection \Rightarrow partition right-hand-sides into 3 sets (a, b, c);

•
$$\theta_{u_1} = a + c + b \Rightarrow \theta_{u_1} = a + b;$$

Flat Tree Algorithm

Intuition based on a simple 2D example:

• Nested Dissection \Rightarrow partition right-hand-sides into 3 sets (a, b, c);

•
$$\theta_{u_1} = a + c + b \Rightarrow \theta_{u_1} = a + b;$$

 $\hookrightarrow \textbf{Top-down} \text{ approach} + \textbf{local optimisation} \text{ for the nodes at the } \\ \text{current layer in the tree.}$

flops: normalized with the dense case; Ordering: Nested Dissection;

 \hookrightarrow Still 28% above the lower bound on one case.

Adapted blocking technique

Objective: decrease $\boldsymbol{\Delta}$ with the creation of a minimum number of groups.

Computations on explicit zeros still exist.

Adapted blocking technique

Objective: decrease $\boldsymbol{\Delta}$ with the creation of a minimum number of groups.

 Δ_{min} may be obtain by creating *nrhs* groups:

• however, not performant (loss of BLAS 3 operations);

Adapted blocking technique

Objective: decrease Δ with the creation of a minimum number of groups.

 Δ_{min} may be obtain by creating *nrhs* groups:

- however, not performant (loss of BLAS 3 operations);
- need to find some property to group right hand sides together without introducing extra operations.

Principle (1): group sets of right hand sides that belong to different subdomains (starting with root separator).

2D Domain structure of B

non-zero structure of a and c are disjoint;

Principle (2): extract set of right hand sides that belong to both subdomains (starting with root separator).

2D Domain structure of *B*

- non-zero structure of a and c are disjoint;
- whereas b may have the non-zero structure of both a and c;

Principle (2): extract set of right hand sides that belong to both subdomains (starting with root separator).

2D Domain structure of *B*

- non-zero structure of a and c are disjoint;
- whereas *b* may have the non-zero structure of both *a* and *c*;
- thus, we extract them.

Comparison with a regular blocking strategy

Our Blocking algorithm (BLK):

- greedy algorithm to choose next group;
- stop condition: $\Delta < \Delta_{tol}$, where $\Delta_{tol} = 1.01 \Delta_{min}$.

Regular blocking algorithm (REG):

- split in chunk of regular size;
- stop condition: $\Delta < \Delta_{tol}$, where $\Delta_{tol} = 1.01 \Delta_{min}$.

nb groups	5Hz	7Hz	E1	E3
REG	328	255	363	258
BLK	3	3	4	4

Table: Number of groups created for each strategy with a tolerance such that $\Delta < 1.01 \times \Delta_{tol}.$

Achievements:

- implementation of two heuristics (permutation, blocking);
- 90% decrease in flops by exploiting sparsity;
- Up to 40% decrease in time for forward solve w.r.t. INT strategy and Nested Dissection ordering (sequential).

Perspectives:

- adapt the Flat Tree algorithm to unbalanced trees;
- parallelism and sparsity aspects of Flat Tree permutation;
- extend to more general test cases.

- LIP laboratory for access to the machines;
- EMGS et SEISCOPE for providing test cases;
- This work was performed within the frameworks of both the MUMPS consortium and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

?

Thanks! Questions?