## Linear solvers on modern computing architectures: exploiting GPU acceleration and mixed precision

CINES, June 25, 2025

- 13:30-14:00 Visit of the Adastra supercomputer
- 14:00-14:30 Mumps Tech MUMPS: MUltifrontal Massively Parallel Solver for the direct solution of sparse linear equations
- 14:30-15:15 Gabriel HAUTREUX (CINES, France) Adastra: an exascale architecture for national research in AI and HPC
- 15:15-15:45 Coffee Break
- 15:45-16:35 Thierry GAUTIER and Pierre-Etienne POLET (Inria-LIP, ENS Lyon, France) On the Use of APU Architectures in MUMPS / XKBIas
- 16:35-17:00 Théo MARY (CNRS-LIP6, Sorbonne University, France) Mixed Precision Algorithms in Numerical Linear Algebra
- 17:00-17:25 Antoine JEGO (LIP6, Sorbonne University, France) BLAS-based Block Memory Accessors with Applications to Mixed-Precision Sparse Direct Solvers

# MUMPS: MUltifrontal Massively Parallel Solver for the direct solution of sparse linear equations

MUMPS group

Workshop CINES, June 25, 2025



#### Code Aster (EDF)

### Wide range of applications

(e.g. structural analysis, geoscience, electromagnetism, circuit simulation, finite element and optimization ...)



FEKO-EM (Altair)



 $\Rightarrow$ 

Solve AX = B, with **A** a sparse matrix *critical step in HPC simulations* 



 $\Rightarrow$ 

### Sparse direct linear solvers

Factor 
$$\mathbf{A} = \mathbf{L}\mathbf{U}$$
; Solve:  $\mathbf{L}\mathbf{Y} = \mathbf{B}$ , then  $\mathbf{U}\mathbf{X} = \mathbf{Y}$ 

Method of choice for its accuracy and robustness

## The MUMPS solver - http://mumps-solver.org

- Free software package ( $\approx$  700 research citations per year, google scholar)
- Fed by the research (15 theses)

- First public version: March 2000
- Latest release: MUMPS 5.8.0, May 2025
- License: CeCILL-C
- User community (3 software requests/day)







MUMPS Solver has been awarded in July 2024 by the European Mathematical Society (EMS) and the European Consortium for Mathematics in Industry (ECMI), the Lanczos Prize for Mathematical Software

## From sparse matrix to dense kernels: the multifrontal approach

Solution of AX = B performed in 3 phases: (A  $n \times n$  sparse matrix with NZ non-zeros)

- 1. analysis, on the graph of  ${\bf A}$ 
  - build ordering (METIS, SCOTCH, parMETIS, pt-SCOTCH, ...)
  - prepare factorization, build elimination tree





- 2. numerical factorization, decompose  $\mathbf{A} = \mathbf{L}\mathbf{U}$ 
  - work on dense matrices following elimination tree
  - stability relies on numerical pivoting
- 3. solve, forward and backward substitutions  $\mathbf{L}\mathbf{Y} = \mathbf{B}$ ,  $\mathbf{U}\mathbf{X} = \mathbf{Y}$

Data sparsity and mixed precision

Computer driven algorithms

Performance illustration and concluding remarks

### Data sparsity

In some applications the frontal matrices exhibit low-rank blocks



A block B represents the interaction between two subdomains  $\sigma$  and  $\tau$ . Small diameter and far away  $\Rightarrow$  low numerical rank.

 $\Rightarrow$  Many representations: Recursive  $\mathcal{H}, \mathcal{H}^2$ , HSS, HODLR, BLR . . .

### Block Low-Rank Multifrontal feature: principle



Singular value decomposition (SVD) of each block  $B \Rightarrow B = X_1S_1Y_1 + X_2S_2Y_2$ 

Workshop CINES, June 25, 2025

### Block Low-Rank Multifrontal feature: principle



### Block Low-Rank (BLR) main features and properties

• BLR is based on a flat 2D block partitioning, compatible with features of a general solver

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. "Improving Multifrontal Methods by Means of Block Low-Rank Representations". In: SIAM SISC (2015).

### Block Low-Rank (BLR) main features and properties

• BLR is based on a flat 2D block partitioning, compatible with features of a general solver

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. "Improving Multifrontal Methods by Means of Block Low-Rank Representations". In: SIAM SISC (2015).

• BLR reduces asymptotic complexity:

Complexity reduction (3D Poisson,  $n = N \times N \times N$  mesh, BLR rank bound in O(1)):

 $O(n^2) \rightarrow O(n^{4/3})$  flops  $O(n^{4/3}) \rightarrow O(nlog \; n)$  memory

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. "On the Complexity of the Block Low-Rank Multifrontal Factorization". In: SIAM SISC (2017).

### Block Low-Rank (BLR) main features and properties

• BLR is based on a flat 2D block partitioning, compatible with features of a general solver

P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L'Excellent, and C. Weisbecker. "Improving Multifrontal Methods by Means of Block Low-Rank Representations". In: SIAM SISC (2015).

• BLR reduces asymptotic complexity:

Complexity reduction (3D Poisson,  $n = N \times N \times N$  mesh, BLR rank bound in O(1)):

 $O(n^2) \rightarrow O(n^{4/3})$  flops  $O(n^{4/3}) \rightarrow O(nlog \; n)$  memory

P. Amestoy, A. Buttari, J.-Y. L'Excellent, and T. Mary. "On the Complexity of the Block Low-Rank Multifrontal Factorization". In: SIAM SISC (2017).

### • BLR is backward stable

N. Higham and T. Mary. "Solving Block Low-Rank Linear Systems by LU Factorization is Numerically Stable". In: IMA J. Numer. Anal.(2021).

### Mixed precision Block Low-Rank approximation



Truncated SVD

- $B = \sum_{k=1}^r x_k \sigma_k y_k^T$ , with r such that
- $\|B X_{\varepsilon} \Sigma_{\varepsilon} Y_{\varepsilon}^T\| \leq \varepsilon \|A\|$

### Mixed precision Block Low-Rank approximation



Truncated SVD with 2-precision formats (fp64, fp32)

- The idea: convert  $X_2$  and  $Y_2$  to single precision (fp32)
- Criterion for storing columns  $x_i$  and  $y_i$  in precision fp32:  $\sigma_i \leq \frac{\varepsilon}{u_s} ||A||$ , with  $u_s = 6 \times 10^{-8}$
- $||B X_1 \Sigma_1 Y_1^T X_2 \Sigma_2 Y_2^T|| \lesssim 3 \varepsilon ||A||$

## Mixed BLR: dissociate storage and compute precisions

Exploiting precisions for computations other than fp64 and fp32 is hardware dependent but mathematical theory applies to any number of  $precisions^1$ 

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel et al.. *"Mixed Precision Low Rank Approximations and their Application to Block Low Rank LU Factorization"*. In: Journal of Numerical Analysis (2022)



Storage precisions: large number, arbitrary format



small number, available in hardware

## Mixed precision Block Low-Rank approximation: results

- thmgaz (thermo-hydro-mechanics) matrix (n = 5M)
  - Factor size (Full-Rank): 141 GigaBytes
  - **BLR**:  $\varepsilon = 10^{-10}$



(from code\_aster)

|          | Olympe computer (CALMIP), 2MPI $	imes$ 18threads |        |                     |     |                     |
|----------|--------------------------------------------------|--------|---------------------|-----|---------------------|
|          | Factor                                           | Total  | Factorization Solve |     | Backward            |
|          | size                                             | memory | time tir            |     | error               |
|          | (Gigal                                           | Bytes) | (sec)               |     |                     |
| fp64 BLR | 103                                              | 132    | 61                  | 1.7 | $4 \times 10^{-14}$ |
|          |                                                  |        |                     |     |                     |

## Mixed precision Block Low-Rank approximation: results

- thmgaz (thermo-hydro-mechanics) matrix (n = 5M)
  - Factor size (Full-Rank): 141 GigaBytes
  - **BLR**:  $\varepsilon = 10^{-10}$
  - Mixed BLR: 2/7 precisions for LU storage, and 2 precisions during solve computation



(from code\_aster)

|              | Olympe computer (CALMIP), 2MPI $	imes$ 18threads |        |                     |      |                     |
|--------------|--------------------------------------------------|--------|---------------------|------|---------------------|
|              | Factor                                           | Total  | Factorization Solve |      | Backward            |
|              | size                                             | memory | time                | time | error               |
|              | (GigaBytes)                                      |        | (sec)               |      |                     |
| fp64 BLR     | 103                                              | 132    | 61                  | 1.7  | $4 \times 10^{-14}$ |
| Mixed BLR(2) | 80                                               | 120    | 68                  | 1.9  | $5 \times 10^{-14}$ |
|              |                                                  |        |                     |      |                     |

## Mixed precision Block Low-Rank approximation: results

- thmgaz (thermo-hydro-mechanics) matrix (n = 5M)
  - Factor size (Full-Rank): 141 GigaBytes
  - **BLR**:  $\varepsilon = 10^{-10}$
  - Mixed BLR: 2/7 precisions for LU storage, and 2 precisions during solve computation



(from code\_aster)

|              | Olympe computer (CALMIP), 2MPI $	imes$ 18threads |        |                     |     |                     |
|--------------|--------------------------------------------------|--------|---------------------|-----|---------------------|
|              | Factor                                           | Total  | Factorization Solve |     | Backward            |
|              | size                                             | memory | time time           |     | error               |
|              | (GigaBytes)                                      |        | (sec)               |     |                     |
| fp64 BLR     | 103                                              | 132    | 61                  | 1.7 | $4 \times 10^{-14}$ |
| Mixed BLR(2) | 80                                               | 120    | 68                  | 1.9 | $5 \times 10^{-14}$ |
| Mixed BLR(7) | 67                                               | 111    | 68                  | 2.1 | $5 \times 10^{-14}$ |

 $\Rightarrow$  significant memory gains considering 7 precisions w.r.t. 2 precisions

Data sparsity and mixed precision

Computer driven algorithms

Performance illustration and concluding remarks



### Hybrid parallelization

- Distributed memory parallelism (MPI based) combined to
- shared memory parallelism (multithreading):
  - use of multithreaded BLAS
  - OpenMP directives
  - multithreading between independent tasks

Strategy for hybrid parallelization (case of multiple threads per MPI process):

- $\circ$  under " $\mathcal{L}_0$ -MPI": one MPI process per subtree (to limit communication)
- one thread per subtree





#### Types of compute nodes with accelerators

Larger memory on CPU: offload from CPU to GPU, use runtime libraries for BLAS on GPU:

- cublasXt: provided by Nvidia
- XKBlas: collaboration with Inria-ENS Lyon, also supports AMD GPU
- efficiency relies on exploiting both CPU and GPU
- Larger memory on accelerator, most data and related computing on GPU
- Unified memory should enable to use the best of CPUs and GPUs

## Offload from CPU to GPU

External libraries can take care of tiling, allocation/memory management on GPU, CPU  $\leftrightarrow$  GPU data transfers

cublasXt: provided by NVIDIA

XKBlas: collaboration with T. Gautier<sup>2</sup> (LIP laboratory, ENS Lyon)

Offload approach

if Arithmetic Intensity of frontal matrix "large enough" (Al\_Threshold) then Adjust blocking; asynchronous memory pinning Wrap GEMM/TRSM to call cublasXt or XKBlas else Standard multicore processing of frontal matrix

end if

AI\_Threshold depends on cublasXt or XKBIas, GPU type, CPU cores

<sup>2</sup>Gautier et al., A Runtime System for [...] on Heterogeneous Architectures [...], IPDPS 2013

Data sparsity and mixed precision

Computer driven algorithms

Performance illustration and concluding remarks

## Experiments on Adastra (CINES), CPU partition (AMD-Genoa)

### Adastra CPU partition (536 nodes)

- 192 AMD cores: bi-procs AMD GENOA with 96 cores each (4th Gen AMD EPYC 9654, 2.4GHz)
- 768 GBytes memory/node

### Applications in Seismic imaging

- Two Adastra CPU CINES Grand Challenge projects in seismic imaging:
  - "Large scale modelisation of harmonic waves based on high order polynomials Hybridizable Discountinous Galerkin (HDG) method" led by Makutu team (Inria-TotalEnergies), (45 millions CPU hours).
  - "MUMPS4FWI (Full Waveform Inversion using MUMPS direct solver)" led by WIND project (UMR Géoazur, Sophia Antipolis, France), (37 millions CPU hours).

## Efficiency of a large simulation in Full-Waveform Inversion<sup>3</sup>

- Adastra MUMPS4FWI project led by WIND team
- Application: Gorgon Model, reservoir 23km x 11km x 6.5km
- Single precision complex matrix, 531 Million dofs
- Single complex flops for one *LU* factorization: Full-Rank:  $2.6 \times 10^{18}$ ; BLR ( $\varepsilon_{BLR} = 10^{-5}$ ):  $0.5 \times 10^{18}$ ;



(25-Hz Gorgon FWI velocity model)

<sup>3</sup> Work presented at EAGE 2024 conference "Pushing the limits of 3D frequency-domain FWI with the 2015/2016 OBN Gorgon dataset"

## Efficiency of a large simulation in Full-Waveform Inversion<sup>3</sup>

- Adastra MUMPS4FWI project led by WIND team
- Application: Gorgon Model, reservoir 23km × 11km × 6.5km
- Single precision complex matrix, 531 Million dofs
- Single complex flops for one LU factorization: Full-Rank:  $2.6 \times 10^{18}$ ; BLR ( $\varepsilon_{BLR} = 10^{-5}$ ):  $0.5 \times 10^{18}$ ;



(25-Hz Gorgon FWI velocity model)

### Performance analysis

### Theoretical peak performance

- Simulation performed on 48 000 cores (500 MPI × 96 threads/MPI)
- Peak perf.: 3686 TFlops/s (single real flops)

 $(500 \times 96 \times 2.4 \text{GHz} \times (2 \text{ (single real}) \times 16 \text{ flops/cycle})$ 

<sup>&</sup>lt;sup>3</sup>Work presented at EAGE 2024 conference "Pushing the limits of 3D frequency-domain FWI with the 2015/2016 OBN Gorgon dataset"

## Efficiency of a large simulation in Full-Waveform Inversion<sup>3</sup>

- Adastra MUMPS4FWI project led by WIND team
- Application: Gorgon Model, reservoir 23km × 11km × 6.5km
- Single precision complex matrix, 531 Million dofs
- Single complex flops for one LU factorization: Full-Rank:  $2.6 \times 10^{18}$ ; BLR ( $\varepsilon_{BLR} = 10^{-5}$ ):  $0.5 \times 10^{18}$ ;



(25-Hz Gorgon FWI velocity model)

### Performance analysis

### Theoretical peak performance

- Simulation performed on 48 000 cores (500 MPI × 96 threads/MPI)
- Peak perf.: 3686 TFlops/s (single real flops) (500×96×2.4GHz×(2 (single real)× 16 flops/cycle)

### Effective performance

- BLR flops =  $2 \times 10^{18}$  single real flops ((2+6)/2 × 0.5 × 10<sup>18</sup>)
- Time for factorization: 5946 sec
- Effective performance: 336.4 TFlops/s
  - $(2 \times 10^{18}/5946)$
  - $\rightarrow$  9% of the peak (w.r.t effective BLR flops)

<sup>&</sup>lt;sup>3</sup> Work presented at EAGE 2024 conference "Pushing the limits of 3D frequency-domain FWI with the 2015/2016 OBN Gorgon dataset"

### Modeling of time-harmonic waves with HDG method

- Context: Adastra high order polynomials HDG method, Makutu team (Inria-TotalEnergies)
- Application: Helmholtz equation, polynomials orders: 3-8
- Complex matrix, 1050 Million dofs, storage(A)=1.5 TBytes; order(G(A))= 84 M
- Full-Rank (FR) cost: flops for one LU factorization=  $1.2 \times 10^{17}$ ; estimated storage for LU factors= 13 TBytes

| 48 000 cores (1000 MPI $	imes$ 48 threads/MPI); | BLR with $\varepsilon_{BLR} = 10^{-7}$ ; FR: fp32; |
|-------------------------------------------------|----------------------------------------------------|
| Mixed precision BLR: 3 precisions (32bit        | s, 24bits, 16bits) for storage                     |

| LU            | size | (TBytes) | Flops                |                      | Time BLR + Mixed (sec) |       |       | Scaled Resid.            |
|---------------|------|----------|----------------------|----------------------|------------------------|-------|-------|--------------------------|
| $\mathbf{FR}$ | BLR  | +mixed   | FR                   | BLR+mixed            | Analysis               | Facto | Solve | BLR+mixed                |
| 13            | 7    | 5        | $1.2 \times 10^{17}$ | $1.9 \times 10^{16}$ | 550                    | 1384  | 22    | $\approx \times 10^{-5}$ |

in practice: hundreds to thousands of Solve steps

Linear algebra is at the heart of numerical simulation; computer architecture evolution strongly influences our algorithms and need to be anticipated

- Architecture of exascale computers need to be analysed/understood
   → see talk of Gabriel HAUTREUX (CINES, France),
   Adastra: an exascale architecture for national research in AI and HPC
- Accelerators plays an important role in computer evolution
   → see talk of Thierry GAUTIER and Pierre-Etienne POLET (Inria-LIP, ENS Lyon, France),
   On the Use of APU Architectures in MUMPS / XKBlas
- Low precision storage and computation is a promising research axis for large applications:
   → see talks of Théo MARY (CNRS-LIP6, Sorbonne University, France)
   Mixed Precision Algorithms in Numerical Linear Algebra
   → and of Antoine JEGO (LIP6, Sorbonne University, France)
   BLAS-based Block Memory Accessors with Applications to Mixed-Precision Sparse Direct Solvers

## Workshop on Approximate Computing in NLA, 7-10 Oct 2025



- Location: Sorbonne University (4, place Jussieu), Paris
- Dates:
  - Habilitation defense of T. Mary: 7 Oct afternoon
  - Workshop: 8-10 Oct
- Program available online! 54 talks and posters on mixed precision, low-rank approximations, randomization, emulation, direct and iterative solvers, preconditioners, multigrid, tensors, ...
- Registration is free but mandatory, limited number of seats remaining!

https://approxcomputing.sciencesconf.org/ Workshop CINES, June 25, 2025

### Experimental environment

• CALMIP center of Toulouse (grant number P0989):

### Olympe nodes

- CPU node: Two Intel 18-cores Skylake 6140 @2.3 GHz (Peak/core=73.6 GF/s, Peak/node=2.6 TFlops/s FP64), 192 GB memory per node
- GPU node: Two Intel 18-cores Skylake 6140 @2.3 GHz (Peak/core=73.6 GF/s, Peak/node=2.6 TFlops/s FP64), 384 GB memory per node, 4 GP-GPU Nvidia Volta (V100 7.8 TFlops/s FP64)
- GENCI-CINES, ADASTRA supercomputer: HPE Cray EX235a
  - 61.6 PFlops/s peak, 46 PFlops/s (Linpack); 50 GFlops/Watt
  - Partition with accelerated nodes (338 nodes):
    - accelerated nodes based on AMD Optimized 3rd Generation EPYC 64C 2.0 GHz, 512 GB on four AMD Instinct MI250X GPU, 256 GB on CPU
  - Partition with CPU nodes (536 nodes):
    - 192 AMD cores: bi-procs AMD GENOA with 96 cores each (4th Gen AMD EPYC 9654, 2.4GHz)
    - 768 GBytes memory/node

### Nvidia GraceHopper

- $^{\circ}~$  72 core ARM @ 3.0Ghz; DDR 480GB @ 384 GB/s
- GPU: Nvidia H100 (34 Tflops/s FP64); HBM 96GB @ 4000 GB/s; comms: 450GB/s full duplex